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ABSTRACT
Recently, several multidisciplinary projects have begun to
model and simulate human physiological systems. However,
the simulators for these models are often limited in terms
of simulation type and lack of parallel computing support.
In this paper we describe insilicoSim, an extendable simu-
lation engine for performing parallel large scale biophysical
simulations. We present three key components of the sim-
ulator for improving extensibility and performance. First,
we demonstrate how a standardized plugin interface allows
for easy extension of the simulator to new types of input,
output and simulation methods. We detail a technique for
improving simulation performance by simplifying and com-
piling simulation related mathematical expressions into an
internal byte code representation for fast evaluation. Fi-
nally, we describe the simulation object manager which al-
lows for shared object access between simulation interfaces
while transparently performing parallel synchronization. We
demonstrate the effectiveness of these methods by simulat-
ing several models on both serial and parallel computing
platforms.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—environments; I.6.8 [Simulation and Model-
ing]: Types of Simulation—continuous, parallel
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1. INTRODUCTION
In the past decade, research efforts such as the Human

Genome Project have demonstrated the successful applica-
tion of computation to the field of biology in order to map
the human genome. Recent projects are working to extend
this to the human physiome, and include the Virtual Phys-
iological Human [4], the IUPS Physiome project [11] and
the in silico Medicine initiative [17, 1]. These efforts aim to
create multiphysics and multiscale models of human phys-
iological systems and perform computer based simulations
with the models. The simulations help researchers under-
stand complex physiological phenomenon, for example, the
effect of drugs in causing cardiac arrest [16].

Currently available simulators for these types of models
are often limited in their scope and functionality. Simula-
tors are available for molecular level simulations [8] or cel-
lular particle simulations [12] that offer parallel computing
support. However, these focus on physical phenomenon at a
much smaller level than required for many physiological sim-
ulations, which can operate at tissue/organ level or higher.
Physiologically oriented parallel simulators tend to be very
domain specific and focus on one type of model. These are
usually specific to neuronal networks [18] or cardiac mod-
eling [15]. Other simulators allow general models described
with domain specific markup languages [3] [14], but do not
offer parallel computing needed for large scale models. To
the best of our knowledge, the simulator described in this
paper is the first generalized physiome oriented simulator
with parallel computing abilities.



In this paper we describe the structure and function of the
insilicoSim program which performs parallel simulations of
heterogeneous biophysical models. In Section 2 we present
background about the simulator and what problems it solves,
then detail the target biophysical models in Section 3. The
core simulation engine and interfaces are described in Sec-
tion 4. Techniques for improving simulation performance
and enabling parallel simulations are described in Section
5. We experimentally demonstrate the effectiveness of these
techniques using several models in Section 6 and offer dis-
cussion and conclusions in Section 7.

2. BACKGROUND
In this section we describe the background behind insil-

icoSim and related simulators. We present some of the prob-
lems with biophysical simulations and how insilicoSim at-
tempts to solve these problems.

insilicoSim is designed for use in conjunction with a bio-
physical model development environment called insilicoIDE.
Previously, simulations were performed by generating C++
source code for a given model from insilicoIDE, then com-
piling and executing it to view the results. In previous work
[7] we investigated methods for performing parallel simula-
tions with the generated source with some success. However,
as models become larger the compilation time grows signifi-
cantly. In addition, this type of simulation made it difficult
to add support for new data types, simulation techniques
and input model types.

To solve these problems, we developed insilicoSim. In
designing insilicoSim there were three main goals, each of
which presented difficulties:

1. Make the system easily extendable to additional in-
put/output data formats and simulation techniques.

2. Allow parallel simulation of large scale models over
multiple processors.

3. Achieve high performance, comparable to model com-
pilation and execution in an interpreted language.

The primary aim of insilicoSim is to allow simulation of
heterogeneous biophysical models. By heterogeneous, we
mean the models may be represented using different formats,
and may contain multiple interacting elements simulated as
algebraic functions or ordinary differential equations with
many parameters. Furthermore, there are a variety of meth-
ods available to simulate the models and the simulator must
allow easy addition of other methods. To solve the problem
of allowing simulator extensions, we developed a common
interface to the simulator (Section 4.2). To enable common
access to the model across all interfaces, we implemented a
shared object manager (Section 5.2).

The next aim of insilicoSim is to enable parallel simu-
lations while allowing heterogenous models and extensions.
Parallel simulations are necessary because models may be-
come very large (thousands or millions of elements) and us-
ing a single computer may be impossible due to time or hard-
ware constraints. The majority of programs and libraries
used for biophysical simulation are serial, and large scale
parallel simulations must often be implemented by hand and
tailored to simulate a specific model. Parallelizing an ex-
tendable simulator is difficult because different extensions
will access different simulation objects in different ways. To

implement this we use the shared object manager (Section
5.2) to create global communication plans then transpar-
ently perform parallel synchronization during the simula-
tion.

Finally, if insilicoSim cannot achieve relatively high per-
formance simulations then it may be wiser to stay with the
previous technique of compiling model source files. This is
difficult because the internal tree structure of the model in
insilicoSim is suited to easy manipulation rather than fast
computation. To achieve high performance, we use standard
compilation techniques to convert this internal representa-
tion into an internal byte code, and remap abstract values
onto arrays for fast access (Section 5.1).

3. EXAMPLE MODEL
In this section we describe the representation of a model

in insilicoSim using an example. This section is intended as
a background for readers unfamiliar with physiological mod-
eling. Figure 1 shows the dependency graph of the example
model - a Luo-Rudy model of ventricular cardiac action po-
tential [13] with an external stimulus. We will use this model
to describe data and calculation in the simulator.

Models in insilicoSim consist of objects and values. The
objects represent the calculations to be performed and the
values represent the results of those calculations. The sim-
ulator supports four types of values in calculations (dou-
ble, vector, matrix, undefined), but for simplicity we focus
only on 64-bit double precision values in this paper. insil-
icoSim supports three types of objects:

1. Ordinary differential equations (ODE) - represent equa-

tions of the form dyi
dt

= f(y0, . . . , yn, t). In biophysi-
cal models these represent things such as the rate of
change of intracellular ion concentration.

2. Function expressions - represent standard function ex-
pressions of the form f(y0, . . . , yn, t) = . . .. These ex-
pressions cannot be self-referential. They represent,
for example, ion gate currents at a particular moment
in time given surrounding ion concentrations.

3. Static parameters - represent static simulation parame-
ters, such as cell membrane permeability or other phys-
ical constants.

In Figure 1, these object types are represented as boxes
(ODEs), ovals (function expressions) and trapezoids (static
parameters). In addition, ghost objects are used in parallel
simulations to represent objects on other nodes. Each of
these objects (except the ghost type) have associated math-
ematical expressions stored in a tree structure in the simula-
tor. This model has 8 ODEs, 31 function expressions and 27
static parameters. There are a few points about the model
worth noting.

First, there are a large number of static simulation pa-
rameters towards the top of the graph representing things
such as stimulus timing, membrane permeability, and so on.
Roughly one third of the model objects are static param-
eters, which is consistent with many biophysical models.
Usually these parameters are specified at the start of a sim-
ulation to test their effect on the overall system behavior.

Second, most ODEs and functions reference values from
several other ODEs and functions to calculate their own
value. This means the model cannot be cleanly separated



C

V

Na_o

E_KE_Na

Na_i K_o

G_K1_bar E_K1G_K_barE_Kp

K_i

G_b_bar

I_b

E_b

I_K1

RT F

alpha_K1 beta_K1

K1_infinity

I_K

alpha_X

X

beta_X

X_i

R T FPR_NaK

G_Kp_bar

I_Kp

Kp

RT F

G_Na_bar

I_Na

alpha_m

m

beta_m alpha_h

h

beta_halpha_j

j

beta_j

R T F

G_si_bar

I_si

alpha_d

d

beta_d alpha_f

f

beta_f

E_si

Ca_i

pulse_onset_time

current_in_micro_ampere_per_centi_meter2

pulse_width pulse_height initial_ampere

Figure 1: Dependency graph of the Luo-Rudy model of ventricular cardiac action potential with external
stimulation. Boxes represent ODEs, ovals represent function expressions and trapezoids represent static
parameters. Arrows represent data dependencies between objects.

Table 1: Calculations needed to approximate ODE
for V in Luo-Rudy model.

# Type Calculation References
1 Param K i None
1 Param K o None
1 Param T None
1 Param F None
1 Param R None
2 Function G K1 bar K o
2 Function E K1 K i, K o, T, F, R
3 Function alpha K1 V, E K1
3 Function beta K1 V, E K1
4 Function K1 infinity alpha K1, beta K1
5 Function I K1 V, K1 infinity, E K1, G K1 bar
. . . . . . . . . . . .
. . . ODE V I K1, . . .

into different types of calculation. Neither can the function
expressions be easily substituted into the ODE expressions,
because they have distinct physical meaning and their values
can be referenced by multiple other expressions.

Finally, functions can iteratively refer to other functions,
for example, I K1 (lower right of Figure 1) refers to the
value of K1 infinity, which refers to alpha K1 and so on.
This means that evaluating functions in the correct order is
critical to simulation correctness.

Table 1 shows a subset of the calculations the simulator
performs when approximating the value of V and the relative
order they must be calculated in. Calculating V requires the
value of several functions, which in turn have dependencies
on other functions, ODEs and parameters. There is an or-
der of calculation that must be followed to obtain the correct
result. For example, alpha K1 requires the value of E K1,
which in turn requires four parameters. Therefore, these pa-
rameters must be evaluated before calculating E K1, which
must be evaluated before calculating alpha K1.

The simulator must therefore create an internal represen-
tation of the model, analyze the representation to determine
the correct calculation ordering and variable relationships,
and perform the required calculations in the correct order
during each simulation step.

4. INSILICOSIM
insilicoSim is a program written in C++ designed to per-

form simulations of biophysical models specified by markup
languages such as SBML (Systems Biology Markup Lan-
guage) [10], CellML [5] and ISML (in silico Markup Lan-
guage) [2]. It is designed to allow easy addition of func-
tionality through interfaces, while transparently performing
parallel synchronization and achieving high performance.

insilicoSim performs simulations by using interfaces which
specify the actions to be taken at each simulation step. Ex-
amples of interfaces and their behavior are shown in Table
2. Interfaces are enabled by the user depending on what sort
of simulation behavior they desire. The base interface is de-
signed to be easily extended by users to support other types
of computation and input/output formats. A core simula-
tion engine connects these interfaces and provides common
methods to access and manipulate objects related to the
simulation.

In Section 4.1 we describe the core engine, how it is called
by the user and how it interacts with the interfaces. The
interface concept is described in Section 4.2, with some im-
plemented interfaces described in Section 4.3.

4.1 Core Engine
The core engine of insilicoSim is responsible for managing

simulation objects and values, and performing synchroniza-
tion and load distribution in parallel simulations. It also
calls the requested interfaces during the simulation. It uses
the Zoltan library [6] for parallel load balancing and MPI
for parallel communication.

The pseudocode for initializing and running the core en-
gine is shown in Algorithm 1. The simulation length and
time step size are defined when the simulator is created. Be-
fore initializing the simulator, all relevant interfaces must be
registered using registerInterface(). The simulator also calls
init() and finalize() on each interface during the respective
simulator calls. The simulator advances the current simu-
lation time during each call to advanceStep() until it has
reached the total simulation time.

4.2 Interface Concept
To allow easy extension of insilicoSim, we designed a base

interface class which is inherited by derived classes. Depend-
ing on the desired functionality of the derived class, it will
override one or more functions which are called by the core
engine. This allows developers to add functionality to the
simulator while smoothly interacting with other interfaces



Table 2: List of available interfaces for insilicoSim.
Interface Category Function
Random Import Generates a random model for testing.

ISML Import Parses an ISML file, and converts it to the internal simulation object model.
SBML Import Parses an SBML file, and converts it to the internal simulation object model.

CVODE Computation Performs ODE approximation using the CVODE library with adaptive time stepping.
Euler Computation Performs ODE approximation using the Euler method.
RK4 Computation Performs ODE approximation using the 4th order Runge-Kutta method.
DOT Export Exports the simulation model as a DOT graph file.
Print Export Prints simulation results to a file in a user specified format.

Progress Misc Periodically displays simulation progress and estimated time to completion.

Algorithm 1 Pseudocode to Run Core Engine

1: simulator = new insilicoSim(total simulation time, time step)
2: for all interfaces do
3: simulator→registerInterface(interface)
4: end for
5: simulator→init()
6: while !simulator→isSimDone() do
7: simulator→advanceStep()
8: end while
9: simulator→finalize()

and the core engine. We describe the interface functions
below and how they interact with the core engine.

void init(InitOptions &init_options,

set<ObjSetRequest> &req_set)

This interface function is called during the simulator init().
In this function the interface performs necessary initializa-
tion, for example, opening a file for writing data. The inter-
face also should provide details to the core engine about its
function. The init_options object lets the interface notify
the core engine about its computational load (for parallel
load balancing), if it uses compiled objects and if it should
be timed by the core engine. Through the req_set object,
the interface notifies the core engine of what type of objects
it will read/write, which is used by the object manager to
order calculations and perform parallel synchronization.

double getObjectWeight(DataObj *obj)

This function is used in parallel computing to perform load
balancing. When called, the interface returns the compu-
tational weight of the given object for this interface. This
allows more accurate load balancing without being specific
to certain types of computation.

void createInitialObjects(DataObjSet &obj_set)

Any interfaces that create objects (ISML, SBML, random)
do so in this routine and pass them back to the core engine
through the DataObjSet object manager. The DataObjSet
is used to assign globally unique identifiers to new objects.
The core engine also provides graph and model analysis tools
to help create the simulator representation of a model.

void objectsRebalanced(DataObjSet &new_obj_set,

DataValSet &new_val_set, SimCurState &params)

This function is called during initialization and after load
balancing is performed by the core engine. This can be used
to reset interface specific structures for the new set of objects
on the processor.

void advanceStep(DataObjSet &obj_set,

DataValSet &val_set, SimCurState &params)

This function is called once during each simulation step. The
interface performs relevant calculations using the objects in
DataObjSet and the values in DataValSet and stores the re-
sults back in the DataValSet. This way the results from one
interface are available to the others. The SimCurState ob-
ject contains information about the current simulation state,
such as simulation time and MPI processor rank.

4.3 Example Interfaces
Next we describe some of the currently available interfaces

for insilicoSim. These range from an interface to construct
a simulator model from ISML model files (4.3.1) to different
types of solvers for the model ODEs (4.3.2 and 4.3.3).

4.3.1 ISML
The ISML interface parses ISML (in silico Markup Lan-

guage) model files and creates an internal representation of
the model. An explanation of ISML is outside the scope of
this paper, details are available in the specification [2].

This interface uses the Xerces XML parsing library to read
an ISML file. It then constructs a corresponding model in
the simulator. Because the core engine uses a common struc-
ture to represent expressions, there is no fundamental differ-
ence in which markup language is used to represent a model.
In the future, users will be able to specify how components of
different models relate, and perform simulations combining
models from different modeling languages.

4.3.2 Euler and Runge-Kutta
The Euler and Runge-Kutta (RK4) interfaces use the cor-

responding approximation techniques to approximate ODEs.
Each of these were written without regard to the type of
model or expressions being evaluated. They use the object
manager interface to iterate through the objects on a proces-
sor, perform the necessary evaluations, and store the results
back in the shared value manager.

The Runge-Kutta method provides a good test of the ob-
ject manager for two reasons. First, it must perform commu-
nication multiple times during a single time step. Second,
it must communicate different values depending on which
midpoint calculation it is performing. Details of how the
object manager achieves these are described in Section 5.2.

4.3.3 CVODE
This interface uses the SUNDIALS library [9] CVODE

solver to approximate ODEs using adaptive time stepping.
Because of the adaptive time stepping technique, the inter-
face may require multiple communications during each time



step where the number of communications cannot be pre-
dicted ahead of time. This type of communication is han-
dled correctly by the object manager. The implementation
of this interface demonstrates how the simulator can easily
incorporate other libraries to perform simulations.

5. OPTIMIZATION TECHNIQUES
Next we describe two techniques used in the simulator

to improve performance and functionality. Section 5.1 de-
scribes a method to improve simulation speed by compiling
objects from their normal tree structure to a simplified byte
code representation. In Section 5.2 we explain how data de-
pendencies and parallel computation are transparently man-
aged by using an object manager.

5.1 Compiled Objects
In this section we describe the technique of compiling ob-

jects to internal byte code in the core engine to improve sim-
ulation speed. Mathematical expressions in insilicoSim are
represented by tree structures, with variables referenced by
a global identifier (GID). The global identifier in turn ref-
erences an abstract data value object, which allows for dif-
ferent types of values (double, vector, matrix). This organi-
zation allows easy creation, manipulation and evaluation of
the expressions.

However, evaluating expressions using this tree structure
is slow for three reasons. First, traversing the tree struc-
ture is inefficient in terms of memory access because the
tree nodes may be spread throughout memory. Second, ref-
erencing variables and calculating values in the expression
is slow because data values are stored as an abstract class.
Third, static parameters in expressions cause unnecessary
references to variables that never change during the simu-
lation. To improve the simulation speed, expression trees
in the simulator can be compiled into internal byte code
thereby ameliorating these three inefficiencies.

Compiling the expression trees is performed in three steps
as shown in Figure 2. The original expression trees are
shown in Figure 2(a), representing the function expression
z = x+2y and the static parameter x = 1+2. The GIDs re-
fer to the global identifiers of each variable. Variables, static
values and intermediate calculation values are all stored as
instantiations of an abstract data value class.

The first step, shown in Figure 2(b), replaces references
to static parameters with the computed parameter value.
In this example, z = x + 2y is replaced by z = 3 + 2y.
Because of the tree structure of the expression, performing
this replacement is simple and fast.

Next, Figure 2(c) shows the tree after the data values are
converted from an abstract class to a normal C++ array of
doubles and renumbered using local identifiers (indices in
the double array). The DataObjSet object manager creates
a mapping from the global IDs to the array, and uses this to
remap the value references.

Finally, the modified expression tree is converted to an
array as shown in Figure 2(d). Each element of the array
describes what sort of instruction it is and what operand
it uses. A side benefit of compiling this array is that the
program can easily predict the maximum required stack size
and preallocate memory to evaluate an expression.

It is worth noting that some simulators export source code
for a model, compile it using an open source compiler such
as GCC, then execute this to perform the simulation. This

Processor 0
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Processor 3

rand_state_4

rand_func_3

rand_state_5

rand_func_2

rand_state_7

rand_func_1

rand_func_0

rand_state_6

Figure 3: Random model graph produced by the
Random and DOT export interfaces. The coloring
represents model partitioning over 4 processors.

technique is fine for small scale calculations, but as we dis-
covered in previous work [7] it quickly becomes intractable
for parallel computation due to the complexity of object
dependencies and parallel synchronization. In addition, for
large models the compilation time can be much greater than
the simulation time. Allowing different data types and sim-
ulation methods makes it even more difficult to generate this
type of source, and packaging a compiler with the simulator
presents a host of other problems, so we opted for a separate
simulation engine.

5.2 DataObjSet Object Manager
A significant difficulty in performing these types of bio-

physical simulations in parallel is caused by object depen-
dencies as described in Section 3. This is particularly true
for chained function dependencies because they cannot be
easily simplified to a single expression. In previous work [7]
we explored the idea of using redundant computation to re-
duce communication for function expressions, but this will
not work for all models.

Therefore, when performing a simulation there are two is-
sues that must be resolved. First, the evaluation of objects
on a given processor must occur in the correct order. Sec-
ond, if the simulation is divided over multiple processors,
synchronization must occur such that a processor has all
the values needed to evaluate an object. In insilicoSim we
developed the DataObjSet object manager to handle both
of these issues. In this section, we describe the algorithm
used by the DataObjSet object manager to correctly order
objects for computation and transparently perform commu-
nication.

As described in Section 4.2, each interface reports to the
core engine what types of objects it will read/write. Based
on this, the DataObjSet object manager creates a set of
ordered computation and communication steps that will en-
sure correct simulation of the model in a parallel environ-
ment.

The DataObjSet object manager is called by the inter-
face using the standard C++ iterator concept. An interface
starts accessing objects by creating an iterator with a call to
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Algorithm 2 Pseudocode of algorithm to generate commu-
nication/calculation steps

Require: Object type T
1: G = dependency graph for objects on this processor of type

T
2: ObjsAvailForComm = [objects not of type T or ghost]
3: StepList = []
4: while any processor needs objects do
5: while G has an object O with no unresolved dependencies

do
6: Add “Calculate(O)” to StepList
7: Add O to ObjsAvailForComm
8: Remove O from G
9: end while

10: if Any other processor has ghost objects in G then
11: AllAvailObjs = ObjsAvailForComm lists over all pro-

cessors
12: ObjsToGet = (ghost objects in G) ∩ AllAvailObjs
13: for all O in ObjsToGet, O is on processor Pi do
14: Add “O ← Pi” to StepList of Pj

15: Add “O → Pj” to StepList of Pi

16: Remove O from G
17: end for
18: end if
19: end while
20: return StepList

Table 3: Expressions for example random model.
Initial Value Expression

0.005 F0 = sin(S5 + F1)
0.016 F1 = sin(S6 + F3)
0.010 F2 = sin(S4)
0.030 F3 = sin(2S4 + S5 + 2S7)

0.562 dS4
dt

= sin(2S7 − S5 − 2F0 − 2F1)

0.250 dS5
dt

= sin(S6 − 2S4 + F3)

0.869 dS6
dt

= sin(S5 + F0)

0.163 dS7
dt

= sin(F3 − F2 + F1 + 2F0)

the manager. This iterator points to an object that should
be evaluated by the interface. Each increment of the itera-
tor returns the next object that should be evaluated. The
object manager transparently performs communication such
that when the iterator references an object, all the depen-
dencies needed for its evaluation have been resolved.

The pseudocode for the computation/communication or-
dering algorithm is shown in Algorithm 2. Orderings are
created for each type of object combination requested by
the interfaces. Object types may be mixed, for example,
“function expressions and ODEs”. The algorithm works by
creating an ordered list (StepList) of objects to evaluate and
communications to perform.

The algorithm first creates a dependency graph of the rel-
evant objects. This allows the algorithm to track which de-
pendencies remain to be fulfilled for a given object. It then
loops until all processors have taken care of their necessary
objects and the graph is empty. The first part of the loop
removes objects with no unresolved dependencies from the
graph, and adds them to StepList and ObjsAvailForComm.
The ObjsAvailForComm list is used to notify other proces-
sors which objects have been evaluated and are available for
communication.

Next the algorithm creates communication steps for any
processors that require them. This involves swapping lists



Table 4: Computation and communication steps for
the functions of the example random model.

Processor
Step 0 1 2 3

0 S4 → P1 S4 ← P0
1 S7 → P1 S7 ← P0
2 S4 → P3 S5 → P2 S5 ← P1 S4 ← P0
3 Calc(F3) S6 ← P3 S6 → P2
4 F3 → P2 F3 ← P1 Calc(F2)
5 Calc(F1)
6 Calc(F0)

of all available objects between processors, finding which
processor Pi has the value of object O needed by Pj and
adding the communication to each of their StepLists.

Finally we present an example of how the DataObjSet ob-
ject manager iterator is generated for a sample model using
the algorithm described above. In this example, we use a
model generated by the Random interface. The model de-
pendency graph is shown in Figure 3, with different coloring
for objects representing a division of the model over 4 pro-
cessors. The expressions for the model are shown in Table
3.

Table 4 shows the steps to compute only the functions
for the random model, as generated by Algorithm 2 for each
processor. The communication steps have been separated for
clarity - in the actual simulation these are grouped together
into MPI Request objects for efficiency. As an example, look
at the expression for F0. This requires the result from F1,
which is on the same processor. However, it also requires
S5, and F1 requires S6 and F3. Therefore, steps 2, 3 and 4
consist of receiving the needed values before beginning the
computation of F0 and F1. At the same time, F3 must be
calculated on processor 1 before being sent to processor 2,
as is performed in steps 3 and 4.

This demonstrates how Algorithm 2 creates computation
and communication plans for arbitrary models that ensure
the correctness of the result. And because the communica-
tion occurs entirely within the DataObjSet object manager,
the interface is completely hidden from the complexities of
parallel synchronization.

6. EXPERIMENTS
To confirm the effectiveness of the optimization techniques

proposed in Section 5 and demonstrate the accuracy of the
different approximation interfaces, we performed a series of
experiments. Serial experiments were performed on a Mac-
Book 2.6GHz dual core Intel with 4GB RAM. Parallel ex-
periments were performed on a Mac Pro 2.26 GHz Xeon
8-core machine with 8GB of RAM.

We used three different models in the experiments with
characteristics shown in Table 5. The average dependencies
represents the average number of references each object has
to other objects. The first model is the Luo-Rudy model
described in Section 3 with an average of 2.58 dependencies
per object. Next we used a model of a spinal neural network
for locomotor rhythm generation based on Rybak’s central
pattern generator [19]. This model is representative of the
large scale models targeted for parallel simulations and has
more connected components, with an average of 5.66 de-
pendencies per object. Finally, we used the random model

Table 5: Model characteristics.
Model Name Luo-Rudy Rybak Random

ODEs 8 560 4
Functions 31 1000 4

Static Parameters 27 1402 0
Average Dependencies 2.58 5.66 2.5

shown in Figure 3.
In this section, we discuss three types of experiments.

First, we examine the accuracy of each type of solver in
Section 6.1. Next, we demonstrate the effectiveness of byte
compiling objects in Section 6.2. In Section 6.3 we show
that simulating models in parallel environments has good
efficiency.

6.1 Result Accuracy
One important point when performing biophysical simu-

lations is confirming that different solvers return approxi-
mately the same results. Because the simulator deals with
differential equations which often do not have an analytical
solution, the interfaces described in Sections 4.3.2 and 4.3.3
are used to obtain approximate solutions.

Each solver was activated by changing a command line op-
tion to the simulator. Because of the shared object manager
and interface design described in Sections 5.2 and 4.2, no
other changes to the code were necessary. For the Luo-Rudy
model, the accuracy is computed for variable V (represent-
ing the membrane potential in millivolts) and for variable
S7 in the random model. The baseline for both models was
computed by CVODE with a timestep of 10−3 and the solver
interfaces each used a timestep of 10−2.

Figure 4 shows the accuracy of the three available ODE
solvers with respect to a baseline solution. As shown, the
error can depend on the model and point in the simula-
tion. For the Luo-Rudy model, sudden changes in V cause
high error in all the interfaces, but this soon stabilizes and
all solvers finish with very low error levels. The random
model is essentially an oscillating system where tiny errors
will quickly accumulate. As shown in Figure 4(b), all the
approximation methods end up with relatively high error,
but the Euler method becomes inaccurate much sooner than
RK4 or CVODE.

6.2 Compiled Objects
In Section 5.1 we described a technique for compiling cal-

culations into a simulator specific byte code and remapping
global identifiers with abstract objects into local identifiers
in an array. Here, we examine the effect of each of the three
compilation steps on simulation performance. We examine
overall computation speed as well as cache performance as
measured by the Cachegrind utility. The Cachegrind util-
ity simulates how a program interacts with the cache and
reports statistics on reads and writes to each cache level.

Figure 5 shows the simulation initialization time and time
per simulation step for the Luo-Rudy and Rybak models
using the Runge-Kutta interface. Figure 6 shows the num-
ber of cache references during simulation of the Luo-Rudy
model. These figures show the effects on execution time and
cache references after applying each step of compilation.

The figures first show the times and references for the orig-
inal expression trees using abstract data values and retaining
static parameters. Next, we run the simulations after sub-
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Figure 5: Comparison of execution time for different levels of compilation.

stituting static parameter references with their actual val-
ues (Step 1 of compilation). Even though static parameters
comprise a large number of simulation objects, this has only
a minor effect on both models. This step decreases simula-
tion time by 2.4% for the Luo-Rudy model and 4.4% for the
Rybak neuron model and has a similar effect on cache ref-
erences in Figure 6. This is not a significant improvement
because static parameters are only calculated once at the
beginning of the simulation, so the savings only comes from
avoiding a lookup in the object map.

The second step of compiling objects changes the global
identifier reference to a local one, and uses an array of dou-
bles for object values rather than manipulating an abstract
data value class. This step further decreases simulation time
by 21.8% for the Luo-Rudy model and 23.4% for the Ry-
bak model, for a total improvement of 23.7% for Luo-Rudy
and 26.8% for Rybak. There are several reasons for this
improvement. First, by using double values rather than ab-
stract classes the simulator can avoid class type checking
when performing calculations. Also, intermediate values do
not need to be represented as an abstract class so the alloca-
tion and freeing of data values is avoided. However, as seen
in Figure 6 there are still a large number of cache references
due to traversing the tree structure.

The final step involves converting the tree structure to
an array of interpreted instructions. This further decreases
simulation time by 92.6% for Luo-Rudy (total decrease of
94.3%) and 94.4% for Rybak (total decrease of 95.9%). There
is also a significant decrease in both instruction and data
cache references, roughly 80% less than the original. There
is also very little change in initialization time, showing that
object compilation to interpreted byte code can produce fast
simulations with little compilation time. It is worth noting
that all steps in compilation result in the same simulation
results.

To put this in perspective, we compared these results to
execution times of a compiled simulation. Simulation with
fully compiled objects gives a speed of 0.754 ms/step for the
LR model and 43.5ms/step for the Rybak model. Since the
Runge-Kutta interface evaluates all functions/ODEs 4 times
per simulation step, this gives an average of 4.83µs to evalu-
ate an object in the LR model and 6.97µs to evaluate an ob-
ject in the Rybak model. In previous research [7] we used a
model similar to Rybak that was converted into source, com-

piled and executed on similar processors. In this case, the
average time to evaluate an object was 1.61µs. This means
our simulator is roughly 3-4 times slower than a compiled
equivalent, on par with many interpreted languages. This
difference is less significant when incorporating compilation
time for large models, which took up to 10 minutes for the
Rybak model.

6.3 Parallel Computing Accuracy and Speed
Next we examine the parallel computing capabilities of the

simulator. For this experiment, we used the Rybak model
with the Runge-Kutta interface and compiled objects. The
Luo-Rudy model is too small to benefit from parallel simu-
lation. In these experiments we want to confirm that calcu-
lation scales well with more processors and communication
does not grow excessively.

The simulation times for this model on an 8 core machine
are shown in Figure 7. The figure shows the total simulation
time on the bottom, broken into four components. Initializa-
tion consists of creating the model and communication plan,
while partitioning involves distributing the objects over mul-
tiple processors. These are performed only once at the start
of simulation. Communication and Runge-Kutta are per-
formed during every simulation step. The top part of the
figure shows the speedup of the entire simulation, the non-
initialization parts (since initialization is not parallelized),
and the Runge-Kutta calculation.

The results show that the program achieves reasonable
speedup for parallel simulation. The Runge-Kutta calcula-
tion alone does well, with 8 processors providing 6x speedup.
Including partitioning and communication in the measure-
ments decreases performance, limiting speedup to roughly
3.5x for 8 processors. However, this will depend on the
model and partitioning method used. The total speedup is
worse due to the initialization time. This can be improved
by optimizing model creation or allowing parallel model im-
portation. For large models though, initialization will be a
relatively small part of total simulation and therefore is a
lower priority.

It is worth noting that no special optimizations were made
for this parallel simulation, besides grouping communica-
tions into MPI Request objects. In future work, we believe
parallel simulations can be further improved by overlapping
communication and computation, and using redundant cal-
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Figure 4: Solver accuracy comparisons.

culation to decrease communication.

7. CONCLUSIONS
In this paper we introduced insilicoSim, an extendable

parallel simulator of heterogenous biophysical models. We
demonstrated three key aspects of the simulator. First, we
showed how a standardized interface concept allowed for ex-
tension of simulation functionality. Next we demonstrated
how simulation performance is improved by simplifying and
compiling expressions. Finally we demonstrated how paral-
lel synchronization and simulation is achieved transparently
through a data object manager.

As multicore processors and parallel computing platforms
become more prevalent, it will be necessary to create sim-
ulators that are easily run in parallel even while they can
be extended to customized solution methods. We believe
the techniques presented in this paper may be applicable to
simulations to aid in this regard.

In the immediate future, we plan to extend the simulator
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to support additional import formats such as CellML and
FieldML, while adding support for agent based simulation
and finite element simulations specified in insilicoML. Be-
cause of the interface concept described in this paper, it is
possible to make these extensions function with pre-existing
interfaces and parallel simulations.
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