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Abstract

In this paper, we examine load distributions to mini-
mize total run time in multi-cluster parallel computing al-
gorithms by applying divisible load theory techniques. Even
with homogeneous processor speeds, parallel computations
in multi-clusters that evenly assign load can run at less than
maximum efficiency due to communication heterogeneity.
Using a modified version of the LogP parallel computing
model, we propose a general technique of assigning load
among multiple clusters to minimize the time each proces-
sor spends waiting. This technique is used to determine op-
timal load distribution for spin glass simulation and paral-
lel bucket sort in multi-cluster systems. It also allows fast
analysis of the effects of adding processors or clusters to
the computation. We experimentally demonstrate the accu-
racy of our model, and show how it eliminates wait time
in multi-cluster parallel computations. Using load distribu-
tions derived from our technique results in an execution time
decrease of up to 50%, depending on the degree of hetero-
geneity among clusters and communication characteristics
of the computation.

1. Introduction

In recent years, cluster computing and computing grids
have become more common. Combining multiple clusters
into a single system is known as “multi-cluster computing”.
These clusters are often geographically separated, resulting
in communication between clusters being slower than com-
munication within a cluster. In a parallel computation on
a multi-cluster setup, some communication may occur be-
tween processors inside a cluster and some communication
may occur over the network connecting the clusters. Proces-
sors in the same cluster have relatively high bandwidth and
low latency between each other compared to processors in
different clusters. Therefore, one way to improve execution

time of a communication intensive parallel computation is
to take advantage of the faster intra-cluster communication.
Also, in a multi-cluster computation it is difficult to estimate
the optimal number of processors. The decrease in calcula-
tion time from using an additional cluster may be offset by
an increase in overall communication time.

We now present an example of how load distribution can
affect execution time in a multi-cluster. Suppose a computa-
tion consists of many steps, each step involving calculation
followed by communication. The calculation and commu-
nication in a step is considered to be arbitrarily divisible,
though one or both may depend on the task load assigned
to a processor. For a given processor, step t must finish
before step t + 1 may begin. During each step proces-
sor Pi performs calculation, then communicates to Pi+1.
Before Pi begins the next step it must receive data from
Pi−1. In this example and in the rest of the paper, pro-
cessor speeds are considered homogeneous. Generally for
homogeneous processors, the task load assigned to each is
equal (denoted the “EVEN” load distribution). In Figure
1, processors P0, P1, P2 and P3 are all in the same clus-
ter connected by a fast link. P0 communicates to P1 over
the fast link, as does P1 to P2 and P2 to P3. The rest of
the processors communicate via a slow link. After P0 fin-
ishes the first step, it must wait for communication from P5

before continuing. This causes a delay for P1 in the sec-
ond step, which in turn delays P2 in the third step and so
on. This demonstrates that EVEN load distribution among
homogeneous processors may not be optimal if communi-
cation speeds are heterogeneous.

If calculation and/or communication cost is in terms of
task load, and the load may be arbitrarily divided among
processors, the total run time of the computation can be im-
proved in the following manner: processors with low com-
munication costs (fast links) are given a larger proportion
of the load, and processors with high communication costs
(slow links) are given less. This is called the BIASED dis-
tribution. The effect of using the BIASED distribution can
be seen in Figure 2, where processors P0, P1, P2 are given
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Figure 1. EVEN Load Distribution
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Figure 2. BIASED Load Distribution

more load and total time decreases. Note that even though
P3 is within the cluster, it is given a smaller load because it
communicates over a slow link. This example uses a ring
style communication pattern, however, the BIASED distri-
bution is also effective with other communication patterns.

Derivation of BIASED load distributions has been inves-
tigated in [11]. However, in this work only a one-way ring
communication pattern was examined, whereas we investi-
gate a two-way ring as well as an all-to-all communication
pattern. Previous work also assumed that calculation time
is linear in terms of load, and communication time is con-
stant, which does not hold for many parallel algorithms. In
this work, we deal with two well known parallel algorithms
- bucket sort and the Ising spin glass simulation.

In this paper we present a method for deriving BIASED
distributions for parallel computation in multi-clusters with
varying distributions of homogeneous processors. We as-
sume there are only two types of communication links - fast
intra-cluster links and slow inter-cluster links. BIASED dis-
tributions can be calculated for environments with heteroge-
neous processors speeds and multiple link speeds. However,
this results in large systems of equations, so for simplicity
we restrict discussion to homogeneous processors and only
two types of links. Given the network and processor speeds,
as well as characteristics of the parallel computation, we de-
termine a BIASED load distribution that results in faster run
time than the EVEN distribution.

The remainder of the paper is organized as follows. In

Section 2 we introduce an extended version of the LogP
model which takes into account network heterogeneity. We
use this model to analyze calculation and communication
time for multi-cluster parallel bucket sort and Ising spin
glass simulation in Section 3. In Section 4, we experimen-
tally verify our model and load distribution algorithm. In
Section 5 we review related work on the subject, and offer
our conclusions in Section 6.

2. Machine and Load Models

The LogP model [6] is a general parallel machine model
used in the design and analysis of parallel algorithms. The
model contains four key parameters to describe a system:

L: the latency of communicating a one word message from
a source to a target.

o: the overhead time a processor spends sending or receiv-
ing a message.

g: the communication gap, i.e. the minimum time between
receiving or sending consecutive messages. Corre-
sponds to the reciprocal of communication bandwidth.

P : the number of processors.

In this paper, the LogP model is extended to recognize
the difference between fast intra-cluster communication and
slow inter-cluster communication. Instead of the L, o and
g parameters, Lf , of , gf (for fast links) and Ls, os, gs (for
slow links) are used. The parameter P remains unchanged.
Using the extended model, BIASED load distribution for
multi-cluster parallel computation can be determined. The
extended model also allows fast investigation of the effects
of adding or removing processors in a computation. In real
systems there may be more types of links (intra-machine
communication, network hierarchies, etc.), but here we re-
strict discussion to only two link types.

In this paper, we combine the extended LogP model with
divisible load theory techniques to determine the fraction of
input data or simulation space to be computed by each pro-
cessor. Standard divisible load theory [2] assumes that the
problem input data may be divided arbitrarily. Although
this is an approximation of actual data (i.e. a bit cannot be
divided), it is accurate for large sets of input data. Note
that divisible load theory assumes no communication be-
tween processors during computation, and no calculation-
communication dependence between processors. In con-
trast, our model assumes communication between proces-
sors, the cost of which is a function of the assigned proces-
sor load and communication pattern. We assume that task
load is arbitrarily divisible among processors, with proces-
sor Pi receiving load fi such that

∑P−1
0 fi = 1. The EVEN

distribution is defined as f0 = . . . = fP−1 = 1
P . A load
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distribution which minimizes wait time for processors in our
extended LogP model is called a BIASED distribution.

3. Analysis of Algorithms

In this section, we determine BIASED load distributions
for a 2D Ising spin glass simulation and parallel bucket sort
algorithm by applying the extended LogP model and divisi-
ble load theory. These algorithms were chosen as represen-
tatives of two extremes in communication patterns - in the
Ising spin model each processor communicates with 2 other
processors in a ring pattern, whereas in parallel bucket sort
each processor communicates with all other processors.

3.1. 2D Ising Spin Simulation

The Ising spin model is a theoretical model used to study
the properties and behaviors of magnetic particles in a field
[9]. The 2D Ising spin model represents a set of magnetic
spins on a two dimensional toroidal square lattice of size S
by S. Each spin is either +1 (up) or -1 (down), and spins in-
teract with an energy of −JSm,nSx,y where Sm,n and Sx,y

are adjacent lattice points, and J is a positive real number
representing the level of interaction. The Metropolis Monte
Carlo [12] algorithm for spin systems is well known, and
can be described as follows: 1) All lattice spins are ran-
domly initialized to up or down. 2) A spin is selected and
flipped if the energy level decreases. 3) If the energy level
of the selected spin increases it is flipped with probability
P (δE) = e

− δE
KbT where Kb is the Boltzman factor and T is

the temperature. 4) Steps 2 and 3 are repeated until termi-
nation criteria are met.

Efficient parallel algorithms for the 2-dimensional Ising
spin model have been studied in [13]. In our analysis, we
use a variant of the “Truly Random” model described in the
same work. The pseudocode for the truly random model
simulation is shown in Algorithm 1.

In this analysis, the simulated lattice is divided in a
striped layout such that each division has exactly 2 neigh-
bors. Since the lattice is toroidal, the leftmost strip is neigh-
bors with the rightmost strip. An example of both EVEN
and BIASED load distributions for the Ising spin simula-
tion is shown in Figure 3. This figure shows an EVEN dis-
tribution to the left, with f0 = f1 = f2 = f3 = 4

16 and a
BIASED distribution to the right, with F0 = 2

16 , F1 = 4
16 ,

F2 = 6
16 . In the BIASED load distribution, processors are

classified by the number of neighbors they communicate
with via a fast link. A processor Pi that communicates with
r neighbors over a fast link and 2− r neighbors over a slow
link is denoted as Pi,r and the load fraction for this proces-
sor is Fr. This means that any two processors Pi,r and Pn,r

have the same load Fr. In each step t, a processor performs

Algorithm 1 Truly Random 2D Ising Spin Simulation - One
Monte Carlo Step

1: for P0 do
2: k ← 1, X ← []
3: while

∑k
i=1 Xi < S2 do

4: Xk = random(1, 4S)
5: k ← k + 1
6: end while
7: Broadcast X1, . . . , Xk to all processors
8: end for
9: for P0, . . . , PP−1 do

10: t← 1
11: while t < k do
12: Update Xt random spins on left half of strip, com-

municate updated border spins with neighbors
13: Update Xt+1 random spins on right half of strip,

communicate updated border spins with neighbors
14: t← t + 2
15: end while
16: end for

f1 f2 f3 F1 F2F0f0 F1

P0 P1 P2 P3 P0 P1 P2 P3

Figure 3. Example load distributions.

Xt spin changes on the left or right half of its strip (alter-
nating every step), then communicates any spin changes on
the edge of the strip to its left or right neighbor. The number
of spin changes performed by Pi,r is FrXt. Xt and Xt+1

are uniformly random numbers from 1 to 4S, so on average
Pi,r will perform 2FrS spin changes per step. We denote
the time to select and flip a spin as Tspin. Thus, the expected
calculation time T calc

r (S) for two steps in processor Pi,r is:

T calc
r (S) = 4SFrTspin (1)

After calculating the spin changes, each processor sends
any changed boundary spin values on its left or right edges
to the neighboring processors. There are an expected 2FrS
spin changes for one step, so the expected number of spin
changes on one edge is (2FrS)/(S2Fr/2S) = 4. The ex-
pected time Tfast(S) (resp., Tslow(S)) for communication
on a fast (resp., slow) link is denoted as:

Tfast(S) = Lf + 2of + 4gf (2)
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Tslow(S) = Ls + 2os + 4gs (3)

The total time T r(S) per Monte Carlo step is:

T r(S) = 4SFrTspin + (2− r)Tslow + rTfast (4)

The expected bandwidth usage is small enough that we
ignore link contention between multiple processors. The
number of processors with r fast links (r ∈ [0, 1, 2]) is de-
noted as Cr such that

∑
Cr = P . For the EVEN distri-

bution, fi = 1/P and the total time for one step is limited
by the slowest link. In the case that there is a processor
communicating only with slow links, the total time is:

T 0
EV EN (S) =

4STspin

P
+ 2Tslow(S) (5)

Wait time can be eliminated by setting the total times
of each processor equal to each other (T 0(S) = T 1(S) =
T 2(S)). This results in three linear equations (Equations 6,
7, 8) in three unknowns (F0, F1, F2):

F0C0 + F1C1 + F2C2 = 1 (6)

F0 − F1 =
Lf − Ls + 2(of − os) + 4(gf − gs)

4TspinS
(7)

F0 − F2 =
Lf − Ls + 2(of − os) + 4(gf − gs)

2TspinS
(8)

These linear equations are solved using Cramers rule to ob-
tain the load distribution. The accuracy of these equations
is demonstrated in Section 4.

3.2. Parallel Bucket Sort Analysis

Cluster based sorting has attracted attention in recent
years as data collections start to span multiple machines and
contain billions or trillions of objects [7]. A common par-
allel sorting algorithm is the parallel bucket sort. In this
work, we use a variation on the parallel bucket sort, where
the data is divided into chunks of objects to increase cache
efficiency and avoid swapping. Pseudocode for the modi-
fied bucket sort is shown in Algorithm 2.

In the modified parallel bucket sort algorithm, there are S
objects to be sorted which are divided among the processors
P0, . . . , PP−1. Each processor Pi holds a fraction fi of the
objects to be sorted, for a total of Sfi objects. The objects
on processor Pi are grouped into chunks. The chunk size is
Ki objects, where Ki = KfiP and K is the default chunk
size. Therefore, there are d S

PK e chunks on each processor.
Each object is referenced by a 2 word key, and contains
(D − 3) additional words of data. In this paper, data keys
are assumed to be uniformly random in [0, Q). Although
actual data keys may have a non-uniform distribution, there
are techniques (such as in sample sort [3]) to determine the

Algorithm 2 Chunked Parallel Bucket Sort
Require: Object keys uniformly random in [0, Q)

1: for P0, . . . , PP−1 do
2: while GetNextChunk() do
3: Sort chunk data keys with qsort()
4: for each Pi 6= self do
5: Send objects in the sorted chunk with keys in

[Qi
P , Q(i+1)

P ) to Pi

6: end for
7: end while
8: Wait for other processors to finish sorting/sending

chunks
9: Merge sorted sub-chunks

10: end for

P0 P1 P2 P3

(1)

(2)

(3)

Figure 4. The parallel bucket sort.

key distribution and modify the algorithm appropriately. In
step (1), shown in Figure 4, each processor gets a chunk and
sorts the objects. We denote a processor Pi with r fast links
and P − r− 1 slow links as Pi,r with load fraction Fr. The
average sorting time for all the chunks at processor Pi,r is:

T r
sort(S) ≈ SFrTsort

K
(9)

where Tsort is the time to sort a chunk of size K. In the
parallel bucket sort algorithm, each processor is assigned a
“bucket”, or range of values. The bucket for processor Pi is
[Qi

P , Q(i+1)
P ). Any objects with keys in a processor’s bucket

range will be sent to that processor in step (2). Unlike in the
Ising spin glass simulation, a processor does not need to re-
ceive all communications before processing another chunk.
Steps (1) and (2) are repeated until the processor has com-
pleted sorting and sending all its chunks. However, before
performing the final merge step (3) a processor must have
received all objects from other processors. Therefore, a
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slow processor can increase the total sort time by forcing
other processors to wait before merging.

Since the keys are uniformly random, on average each
processor will send KFr objects of a chunk to any given
processor. However, in this case we must take network con-
tention into account. We assume that simultaneously send-
ing M messages of size S on a link with gap g will result in
total transmission time of MgS for each message. There-
fore, the communication time on processor Pi,r is:

T r
comm(S) =

S

PK
(rTf + (P − r − 1)Ts) (10)

with Ts = Ls + 2os + (P − r − 1)gsDKFr and Tf =
Lf + 2of + rgfDKFr. This gives a total time of:

T r(S) = T r
comm(S) + T r

sort(S) (11)

As in the spin glass analysis, Ci indicates the number of
processors with i fast links. The total load must equal one,∑P−1

0 CiFi = 1. Processor finish times are set equal:

T i(S) = T i+1(S) (12)

We assume that bandwidth costs are much greater than la-
tency and overhead. For parallel bucket sort, this is true
when D � 1 and/or K � 1. From Equation 12, we get:

Fr+1δr = Fr (13)

δr =
Tsort + DK

P (gfr2 − gs(P − r − 1)2)
Tsort + DK

P (gf (r + 1)2 + gs(P − r − 2)2)
(14)

Simplifying Equation 12 for r = P − 1 gives:

FP−1 =
1∑P−1

i=0 (Ci

∏P−2
j=i δj)

(15)

We solve for FP−1 first, then work backwards to obtain the
distributions for the other processors.

4. Experiments

To test the accuracy of the model and algorithms we per-
formed several experiments. The experiments are intended
to test the load distribution equations in actual programs.
Appropriate sleep values were used in the program to simu-
late intra-cluster and inter-cluster latency, overhead and gap.

The cluster used in these experiments consists of 16 ma-
chines. Each machine has two 2.8 GHz Xeon processors,
with 2 MB L2 cache and 2 GB RAM. The machines were
connected by Gigabit ethernet over an HP Procurve switch.
Network latency, overhead and gap were set at Lf = 45µs,
Ls = 400µs, of = 5µs, os = 10µs, gf = 0.05µs,
gs = 0.5µs. These values are based on measurements of
the cluster Gigabit network and campus area network.

Table 1. Experiment cluster setups.
Setup Total Procs. Clusters × Processors
Spin 1 32 4× 8

Spin 2 32 2× 8, 4× 4

Spin 3 32 2× 8, 2× 4, 2× 2, 4× 1

Spin 4 32 2× 8, 16× 1

Spin 5 32 2× 8, 4× 2, 8× 1

Spin 6 32 8× 2, 16× 1

Sort 1 16 1× 8, 2× 4

Sort 2 16 1× 8, 4× 2

Sort 3 32 1× 16, 2× 8

Sort 4 32 1× 16, 1× 8, 2× 4

Sort 5 32 1× 16, 4× 4

Sort 6 32 1× 16, 8× 2

The Ising spin simulation and parallel sort programs
were written using pthreads. A main computation thread
does the sorting/spin flipping and sending, while a receive
thread handles incoming data. This allows processes to re-
ceive data while performing computation. Message pass-
ing between processes was implemented with MPICH2
v1.05p4. The multi-cluster setups for the experiments are
shown in Table 1. These cluster sizes were chosen to repre-
sent a range of possible configurations. Each setup consists
of a number of clusters, each containing 1, 2, 4, 8 or 16
processors. For example, cluster setup Sort 4 in Table 1 has
1 cluster of 16 processors, 1 cluster of 8 processors and 2
clusters of 4 processors.

4.1. Experimental Setup

Load distributions used in the Ising spin algorithm and
parallel bucket sort experiments are shown in Table 4.
These distributions were calculated using the equations in
Section 3. As expected, a smaller load is allocated to pro-
cessors with fewer fast links, even though processor speeds
are homogeneous. For the Ising spin simulation a lattice
size of S = 8192 was used, and a total of 20 Monte Carlo
steps were performed. The average time to select and flip a
spin was measured to be Tspin = 0.550µs. For the parallel
bucket sort, the total number of objects was S = 1 × 107

and chunk size was K = 4096 objects. For this chunk size,
the average sort time was Tsort = 3.42ms. In both experi-
ments, the programs were executed 10 times for each setup.
A small experiment related to cluster selection was also per-
formed. The parameters and results for this experiment are
described in Section 4.4.

The results of experiments for the spin glass simulation
show that using the BIASED load distribution significantly
reduces total run time. A breakdown of run time for setup
4 can be seen in Figure 5. The effects of the EVEN load
distribution are on the left half of the figure, showing signif-
icant wait time for Pi,1 and Pi,2. This is because processors
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Table 2. Spin simulation load distributions.

Setup EVEN
BIASED

F0 F1 F2

Spin 1 .0313 - .0160 .0363 -
Spin 2 .0313 - .0185 .0389 -
Spin 3 .0313 .0033 .0236 .0440 -
Spin 4 .0313 .0134 .0338 .0541 -
Spin 5 .0313 .0084 .0287 .0491 -
Spin 6 .0313 .0211 .0414 - -

EVEN F1 F3 F7 F15

Sort 1 .0625 - .0405 .0845 -
Sort 2 .0625 .0327 - .0923 -
Sort 3 .0313 - - .0203 .0422
Sort 4 .0313 - .0157 .0212 .0440
Sort 5 .0313 - .0164 - .0461
Sort 6 .0313 .0148 - - .0477

BIASED distribution

EVEN distribution

Initialization
Computation

Communication
Wait Time

Pi,0 Pi,1 Pi,2 P
′

i,0 P
′

i,1 P
′

i,2

Se
co

nd
s

0

20

40

60

80
Spin Simulation Time Breakdown - S=8192, Setup 4

Figure 5. Spin simulation time breakdown.

with fast links complete communication before processors
with slow links, which eventually causes fast link proces-
sors to wait for communication. The effects of the BIASED
load distribution are shown on the right half, where wait
time is nearly eliminated. The BIASED load distribution
effectively increases the calculation load for P ′

i,1 and P ′
i,2 to

compensate for the lower communication cost on these pro-
cessors. All other setups showed similar results in run time
from the BIASED load distribution. Due to the random na-
ture of the algorithm, it is difficult to completely eliminate
wait time. Also, cache effects not included in the model
can affect total wait time. We found that the model became
less accurate for large lattice sizes (S > 215) where each
processors sub-lattice could not easily fit in cache.

4.2. Spin Glass Simulation Results

Figure 6 shows the comparison of the total times for
EVEN and BIASED distributions. In all setups, the BI-
ASED distribution outperformed the EVEN distribution.

Spin (EVEN)
Spin (BIASED)

Sort (EVEN)
Sort (BIASED)

Se
co

nd
s

40

60

80

100

120

Setup
1 2 3 4 5 6

EVEN and BIASED Run Time Comparison

Figure 6. Run time comparison between
EVEN/BIASED distributions.

This was particularly noticeable in setups with a wide distri-
bution of cluster types (setups 3, 4, 5). This is because there
is a wider range of communication speeds for these setups,
and thus a greater wait time with the EVEN distribution.

The accuracy of the model is shown in Table 7. In all
setups, the difference between the predicted and actual run
time was less than 5% or less. It is worth noting that the
time predicted by the model is always less than the actual
time. We believe this is due to the random nature of the
algorithm combined with caching effects.

4.3. Parallel Bucket Sort Results

The results of the parallel bucket sort experiments also
demonstrate the effectiveness of the BIASED distribution.
In the parallel bucket sort, run time is dominated by com-
munication, as the time to send an object is significantly
higher than the time to sort it. This is exacerbated by net-
work contention among processors. The run time break-
down for setup 4 is shown in Figure 7, with the EVEN dis-
tribution processors on the left and the BIASED distribution
processors on the right. In the EVEN distribution, proces-
sors in larger clusters (Pi,15 and Pi,7) are forced to wait for
processors in smaller clusters before merging. With the BI-
ASED distribution, total run time is lowered. All other se-
tups showed similar results from the BIASED distribution.

Comparison of EVEN and BIASED run times for all se-
tups is shown in Figure 6. Run time decrease between the
EVEN and BIASED distributions is greater for the parallel
bucket sort than for the spin simulation. This is because
most of the run time is taken by communication, which
can be spread more evenly among clusters by using the BI-
ASED distribution. Network contention also results in bet-
ter performance by the BIASED distribution - more load
in large clusters results in less network contention for slow
inter-cluster communication.
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Figure 7. Parallel sort time breakdown.

Table 3. Run time comparison.
Setup Model (secs) Actual (secs) Difference
Spin 1 31.3 33.2 5.7%
Spin 2 33.2 35.0 5.1%
Spin 3 37.0 39.2 5.6%
Spin 4 44.5 46.2 3.7%
Spin 5 40.7 42.4 4.0%
Spin 6 50.1 51.3 2.3%
Sort 1 45.8 44.8 2.2%
Sort 2 50.5 49.4 2.2%
Sort 3 47.6 47.5 0.2%
Sort 4 50.0 49.8 0.4%
Sort 5 52.3 52.1 0.4%
Sort 6 54.2 54.0 0.3%

It is worth noting that setups with more homogeneous
clusters (Setups 1,3) show less improvement than setups
with more cluster heterogeneity. For the parallel bucket sort
on multiple identical clusters, the BIASED distribution is
the same as the EVEN distribution and will be of no bene-
fit. However, the BIASED distribution will be beneficial to
the spin glass simulation in any environment with a cluster
having 3 or more processors. This is due to the communica-
tion patterns of each algorithm. Table 7 shows the accuracy
of the model. In all setups, the difference between the pre-
dicted and actual runtime was less than 6%.

4.4. Cluster Selection Analysis

In order to decrease run time, additional processors are
often added to a computation. The models used to deter-
mine BIASED distributions can also be used to evaluate the
effect of adding or removing processors/clusters in the com-
putation. In this experiment, we demonstrate how the model
is used to evaluate adding clusters.

In this experiment, the base system is 2 clusters of 8 pro-
cessors (denoted “Base”). There is an option of adding

one more 8-processor cluster (denoted “8P”), or 3 more
4-processor clusters (denoted “3x4P”). Adding 3x4P gives
50% more processing power than 8P, but also can result in
more communication over the slow inter-cluster link. As
shown in Table 8, the effect of adding 3x4P is nearly the
same as adding 8P, both in the model and actual execu-
tion. For spin simulation, a larger lattice size S results in
more calculation, but does not affect the communication
time. Thus, 3x4P gives better performance as lattice size
increases. The predicted and actual speed increase for the
clusters closely match, demonstrating the effectiveness of
using this model for determining processors to allocate to a
parallel computation. By using the model, resource alloca-
tion decisions can quickly be made for a computation.

5. Related Work

Several works have studied job scheduling for co-
allocation in multi-clusters [4] [10], though these fo-
cus on avoiding network congestion rather than balanc-
ing load. Much of the work in multi-cluster co-allocation
assumes non-divisible tasks and constant communication
costs, which may not be valid for many types of parallel
computations.

Another method of minimizing parallel computation run
time is dynamic load balancing [1] [8] [15] . This method
balances processor load by transferring load from busy pro-
cessors to less loaded processors. Although this technique
is beneficial in an environment with dynamically varying re-
sources, it does not allow analysis of the tradeoffs between
different resources as our model does. Furthermore, dy-
namic load balancing is highly application dependent, and
must be tailored for a given application and/or environment.

Improving execution time of sort on a heterogeneous
cluster has been investigated [5], though this work focuses
on clusters with heterogeneous processor speeds and homo-
geneous communication speeds. There has been some work
in optimizing communication patterns in the Ising spin al-
gorithm for hierarchical cluster setups [14], however, this
work involves sublattice shaping using an EVEN distribu-
tion, and focuses on sweep selection rather than random se-
lection. The work also assumes that the clusters are ho-
mogeneous, whereas our work deals with varying cluster
sizes. Future work could combine sublattice shaping with
BIASED load distribution for random selection.

6. Conclusion and Future Work

In this paper, we demonstrated how EVEN load distri-
bution can cause wait time in multi-cluster parallel com-
putation. We demonstrated a technique for determining BI-
ASED load distribution in multi-clusters with homogeneous
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Table 4. Cluster Addition Analysis.
Clusters Lattice Size (S) Model Actual Difference Model Speedup Actual Speedup

Base 4096 15.67 16.34 4.1% n/a n/a
Base + 8P 4096 11.83 12.85 7.9% 24.5% 21.4%

Base + 3x4P 4096 11.53 12.88 10.5% 26.4% 21.2%
Base 8192 54.42 53.22 2.3% n/a n/a

Base + 8P 8192 39.04 39.92 2.2% 28.3% 25.0%
Base + 3x4P 8192 36.25 37.68 3.8% 33.3% 29.2%

Base 16384 201.1 197.6 1.8% n/a n/a
Base + 8P 16384 139.6 142.1 1.8% 30.6% 28.1%

Base + 3x4P 16384 125.2 135.8 7.8% 37.7% 31.3%

nodes, and derived load distribution equations for a 2D Ising
spin glass simulation and a parallel bucket sort. These equa-
tions were used to calculate BIASED load distributions for
multi-cluster environments. Experiments demonstrated that
the BIASED load distributions outperform the EVEN load
distribution in all tested setups. We also demonstrated that
these equations allow us to evaluate the effect of adding ad-
ditional processors to a computation.

In future work, the model could be extended to include
heterogeneous processor speeds or multiple link speeds.
Further analysis of the model for other types of parallel
computations would prove useful, though some parallel
computations may not be treated as divisible and therefore
could not be used with this technique. Finally, coupling this
kind of divisible load analysis with a task scheduler would
allow quick analysis of various resource allocation strate-
gies and may allow for more efficient scheduling of parallel
tasks in multi-cluster systems or grid environments.
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