
PyMW - a Python Module for Desktop Grid
and Volunteer Computing

Eric M. Heien, Yusuke Takata, Kenichi Hagihara
Graduate School of Information Science and Technology

Osaka University, Toyonaka, Osaka 560-8531, Japan
{e-heien, y-takata, hagihara}@ist.osaka-u.ac.jp

Adam Kornafeld
Laboratory of Parallel and Distributed Systems
Computer and Automation Research Institute

Hungarian Academy of Sciences
H-1132 Victor Hugo u. 18-22, Budapest, Hungary

kadam@sztaki.hu

Abstract—We describe a general purpose master-worker paral-
lel computation Python module called PyMW. PyMW is intended
to support rapid development, testing and deployment of large
scale master-worker style computations on a desktop grid or
volunteer computing environment. This module targets non-
expert computer users by hiding complicated task submission and
result retrieval procedures behind a simple interface. PyMW also
provides a unified interface to multiple computing environments
with easy extension to support additional environments. In this
paper, we describe the internal structure and external interface
to the PyMW module and its support for the Condor computing
environment and the Berkeley Open Infrastructure for Network
Computing (BOINC) platform. We demonstrate the effectiveness
and scalability of PyMW by performing master-worker style
computations on a desktop grid using Condor and a BOINC
volunteer computing project.

I. INTRODUCTION

In recent years, desktop grid and volunteer computing
research has increased thanks to the success of large scale
projects such as SETI@home [1] and Folding@home [2].
However, despite the success of these projects desktop grid
(DG) and volunteer computing (VC) remain uncommon in
most institutions when compared to traditional clusters. For
example, there are currently less than 50 active public VC
projects running BOINC [3], whereas there are well over 1000
clusters using the ROCKS cluster software [4]. This is partly
due to the complexity of starting and maintaining a DG or VC
environment, especially for users without computer expertise.
We developed PyMW to help increase the use of desktop
grid and volunteer computing by providing a simple Python
interface targeting non-computer specialists such as scientists
and researchers.

Python, Ruby, PHP and other such interpreted languages
are becoming increasingly popular as program development
time dominates relative to execution time. These languages
allow fast development combined with runtime error checking,
libraries for computationally intensive functions and platform
independence. Software packages are available for both small
and large scale parallel computation in Python. However,
there are few packages that support desktop grids, and to our
knowledge none that support volunteer computing.

Packages for multicore shared memory processors include
Parallel Python [5] and seppo (simple embarrassingly parallel

python). Rudimentary Python cluster computing is supported
in Parallel Python [5], while MPI implementations for Python
include pyMPI [6] and mpi4py [7]. For master-worker style
computing in Grids, the Condor [8] and Globus [9] software
packages are commonly used, though no Python interface
exists for Condor. The IBIS project [10] offers software
oriented towards multiplatform Grid computing in Java that al-
lows sophisticated interprocess communication. For large scale
computations on volunteer computing platforms, two common
software platforms are BOINC [11] and the Cosm platform.
However, neither of these uses an interpreted language, and
often require customized programs for submitting tasks and
collecting results.

We developed PyMW in response to the need for better
Python based DG and VC tools, in hopes of further opening
these computing environments to scientists and researchers.
PyMW is a Python module designed for master-worker style
computations on a wide variety of parallel computing plat-
forms. Master-worker parallel computation involves a master
process which sends computational tasks to worker processes.
These processes often run on separate machines such as in a
cluster or Grid. The worker processes perform their assigned
tasks and return the results to the master. This is repeated
until all tasks are complete. Examples of common master-
worker style computations include parameter sweeps, Monte
Carlo simulations, genetic algorithms, and other work which is
easily divisible with little or no dependencies between pieces.
An older example of such a system is Marionette [12], which
was designed for heterogeneous networks of workstations
(NOW). Similar to PyMW, Marionette aimed to provide a
simple interface for master-worker computing, though as a C
library rather than a Python module. However, Marionette was
intended only for use on NOWs, and was not suitable for use
on large scale platforms nor for multiprocessor machines.

PyMW aims to provide functionality for master-worker
computation in a Python module that can be executed in
a wide variety of computing environments. In particular,
PyMW targets desktop grid and volunteer computing systems
performing large numbers of tasks. The module is designed to
be as simple and flexible as possible, with the goal of providing
an intuitive interface for users.

The remainder of the paper is organized as follows. In

Section II we describe the PyMW module internal structure,
including the functionality it provides and how programs
interact with it. Section III describes platform interfaces for
Condor and BOINC and how interface implementations for
a given platform should interact with PyMW. We show the
effectiveness of PyMW by running some master-worker style
parallel programs in Section IV on a desktop grid and volun-
teer computing platform. Finally we offer our conclusions in
Section V.

II. THE PYMW MODULE

In this section we describe the organization and usage of
the PyMW module. This includes descriptions of the master
API used by a users program in Section II-A and the interface
to different computing platforms in Section II-B.

Rather than designing custom solutions from scratch for
each computing environment, the philosophy of PyMW is
to utilize existing software as much as possible. Customized
solutions require extra work to implement features already
used in many computing environments such as load balancing,
checkpointing, computational redundancy, etc. For example,
the Condor [8] computing environment provides tools to
distribute and execute tasks on a desktop grid as well as check-
point and move tasks between machines. BOINC (Berkeley
Open Infrastructure for Network Computing) [11] provides a
framework for packaging and distributing tasks in a volunteer
computing environment, automatically handling task failures
and redundant computation. PyMW uses these software pack-
ages to execute tasks on the underlying hardware.

In order to use existing software packages and allow exten-
sion to multiple computing environments, PyMW is divided
into abstraction layers as shown in Figure 1. The first layer
is the user program which loads the PyMW module and calls
PyMW to perform master-worker computations. The second
layer is the “PyMW layer” and contains functions for the user
to submit tasks and retrieve the results of task execution. This
layer also manages task time accounting, error handling and
other platform independent functionality. The PyMW layer is
fully described in Section II-A.

The third layer is called the “interface layer”. This layer
manages the interaction between the PyMW layer and the
underlying software/hardware. For example, with a desktop
grid running Condor this layer is responsible for formatting
and submitting tasks then notifying PyMW on their comple-
tion. Depending on what platform the user wishes to use, they
will select a different implementation of the interface layer.
The functionality of this layer may vary depending on the
underlying hardware. The interface layer is described in detail
in Section II-B.

PyMW currently offers interfaces for four types of sys-
tems - multicore/multiprocessor computers, clusters running
MPI, desktop grids running Condor and volunteer computing
systems running BOINC. Users may change interfaces by
altering one line in their program code, allowing them to
run a single program in different parallel environments. This
enables program development on a multicore machine, testing

PyMW Interface

User Program

PyMW Python Module

Multicore
Interface

BOINC
Project

Multicore
Processor

Desktop
Grid

Condor
Interface

BOINC
Interface

Other
Platform

Other
Interface

Fig. 1. Abstraction layers of PyMW.

on a cluster, and finally deployment on a Grid or volunteer
computing platform. Combining multiple interfaces allows
users to employ different platforms in a single program,
for example, performing a parameter sweep on a grid then
analyzing the results on a multicore machine.

A. PyMW Layer
The abstraction layer of PyMW with which the user most

directly interacts is the PyMW layer. This layer is accessed
through a PyMW Master object instantiated by the user. The
interface used by the PyMW Master object is specified at
creation. The master object accepts tasks from the user and
sends them to the interface. This is done without blocking,
allowing the user program to continue and possibly submit
more tasks. Users later retrieve the results through the master
object. The PyMW layer provides functions for executing
tasks, retrieving the result of finished tasks and checking the
status of the system. The functions provided by this layer are
independent of the underlying interface such that a user may
write a single program that will run on any platform.

PyMW was designed with two users in mind: the program
developer and the interface developer. PyMW exposes only
four functions to the user to allow quick and easy program
development. Users may directly interact with the underlying
interface for greater control, but the goal of PyMW is to allow
development with only the four functions listed below.

m a s t e r = PyMW Master (i n t e r f a c e =None)

This function creates a new PyMW master object associated
with a specified interface. An interface of None indicates the
default multicore interface. Otherwise, this is an instantiation
of an interface described in Section II-B. Tasks are submitted
and results are retrieved using this master object. Master
objects are independent, so a given program can use multiple
platforms if desired.

t a s k = m a s t e r . s u b m i t t a s k (e x e c u t a b l e ,
i n p u t d a t a =None ,
modules = () , d e p f u n c s = ())

The submit_task function creates a task, puts it on a
queue for later scheduling and immediately returns an object
representing the submitted task. The executable must be a
Python script or function. The input_data argument may
be a Python tuple object, or None if the program requires
no input. This will be passed as an set of arguments to
the executable. If executable is a function, additional
dependencies such as modules or functions are specified by
the modules and dep_funcs arguments.

t a s k , r e s u l t = m a s t e r . g e t r e s u l t (t a s k =None ,
b l o c k i n g =True)

The get_result function returns a completed task and
its associated result. If task is None, this will return the next
completed task, or an arbitrary task if there are multiple com-
pleted tasks. If task is not None, this will return the result
of the specified task. If blocking is True, get_result
will wait until the task has completed before returning. If
blocking is not True and there are no completed tasks,
get_result will return None. If there was an error per-
forming the associated task, calling get_result will raise
a Python exception describing the problem. Passing an object
that has not been previously submitted with submit_task
will cause an exception.

s t a t u s d i c t = m a s t e r . g e t s t a t u s ()

The get_status function returns a Python dictionary
with keys specifying the current status of the master and
its associated interface. The status of an interface will vary
depending on the interface implementation. The keys for
master status include a list of task objects that have been
submitted with submit_task.

The internal organization of PyMW is shown in Figure 2,
with the flow of tasks in the system represented by arrows.
First, the call to submit_task creates a task object, which
is put on a run queue and added to the submitted task list.
The scheduler thread removes tasks from the run queue and
attempts to match them with a worker from the interface
function reserve_worker. After finding a suitable worker,
the scheduler thread calls execute_task in the interface to
execute the task. Once the task is completed, the interface
is responsible for calling task_finished on the task
object. This causes PyMW to parse the resulting output data
into a Python object, handle any processing errors, perform
other accounting functions and mark the task as complete.
The results of the task are returned to the user through the
get_result function.

B. Interface Layer

The PyMW layer described in Section II-A interacts with
an underlying desktop grid, volunteer computing project or
other platform through an interface layer. The interface layer

submit_task()

Run Queue

Scheduler
Thread

execute_task()

task_finished()

get_result()

Submitted
Task List

User Program

Py
M

W
 L

ay
er

In
te

rfa
ce

La
ye

r

reserve_worker()

Fig. 2. The internal organization of PyMW and a generic interface. The
arrows represent the flow of tasks through PyMW.

implementation will vary depending on the platform it sup-
ports. This section only describes functionality common to
all interface layer implementations. To properly interact with
the PyMW layer, an interface implementation must expose
certain functions to the PyMW layer. To simplify development
of new interfaces, we tried to make these functions as simple
as possible yet provide flexibility in accommodating different
interface characteristics. The required interface functions are
described below.

i n t e r f a c e . e x e c u t e t a s k (t a s k , worker)

At minimum, all interface implementations must provide
the execute_task function. This function receives a task
object representing the task to be executed, and an interface
specific object representing the worker to execute the task
on. If the worker object is None then any worker may be
used. The execute_task function is called by the PyMW
scheduler in a separate thread and therefore need not return
immediately. This allows multiple tasks to be performed
simultaneously. Upon completion of the task, the interface
must call the task_finished function. If an interface error
occurred the interface layer must pass a Python Exception
object to task_finished describing the error, for example,
failing to call the grid task submission program. For interfaces
that expect many long running tasks such as with Condor
and BOINC, active thread limits may cause problems. In this
case, it is best to exit execute_task immediately and use
a single separate thread to periodically check through all tasks
and report any that have completed.

worker = i n t e r f a c e . r e s e r v e w o r k e r (t a s k)

This function returns an interface-specific object repre-
senting the worker to use when executing the task. The

reserve_worker function may block if a worker is not
available for the task, for example, if the worker is being
used for another task. If the interface does not implement this
function, the worker object is set to None. Future versions
of PyMW will allow users to implement reserve_worker
functionality specific to their program, such as specifying
minimum memory or disk space requirements.

s t a t u s d i c t = g e t s t a t u s ()

This function returns a dictionary of keys with information
specific to the underlying platform. If not implemented, the
dictionary is assumed to be empty.

p y m w w r i t e l o c a t i o n (s e l f o b j , my obj , l o c)
my obj = pymw read loca t i on (s e l f o b j , l o c)

These functions allow interface-specific data reading and
writing functionality. For example, input and output for
tasks on a multicore machine can be done quickly using
stdin and stdout, whereas a task executed on BOINC re-
quires these to be provided as files. For each function, loc
represents an interface specific location and selfobj is
used to determine whether the function is being called in
the task or in PyMW. When implemented in an interface,
pymw_write_location should store the output ob-
ject in the specified location, possibly in a pickled format.
pymw_read_location reads the data at this location, and
returns the corresponding Python object. If these functions are
undefined, input/output is read/written from files.

III. PYMW INTERFACES

As described in Section II-B, the interface layer of PyMW
has different implementations depending on the underlying
platform. PyMW currently offers four interfaces: multicore
processors, networked clusters running MPI, desktop grids us-
ing Condor and volunteer computing systems running BOINC.
Interfaces for other platforms can be added following the
guidelines in Section II-B. In this section, we describe the
interface implementation for two platforms - desktop grid
systems containing tens or hundreds of networked machines
running Condor (Section III-A) and global scale systems using
BOINC running on thousands or millions of machines (Section
III-B). Details of the multicore and cluster interfaces are
available in [13].

A. Condor

Condor is a workload management system aimed at per-
forming compute-intensive jobs on clusters [14] and desktop
grids [15] or a mix of the two. Users install the Condor
application on machines they wish to make available for
computation, then submit tasks to the system.

When submitting a task via condor_submit, it is neces-
sary to create a description file. This is automatically handled
by the interface, which specifies the proper data input and
output locations and error/log files. Furthermore, the interface
ensures that Python is copied to remote machines. This allows
tasks to execute on machines without a shared filesystem or

Co
nd

or
 P

la
tfo

rm

PyMW Layer

Worker
Resource

Condor Interface

Worker
Resource

Worker
Resource.....

condor_submit

Result
Handler

condor_negotiator

Log Log Log

Fig. 3. Condor Interface and task flow.

a Python installation. Tasks submitted to condor_submit
are then passed to the condor_negotiator which matches
them to an appropriate resource. The current version of PyMW
matches a task with any available resource, but future versions
will allow user specified resource requirements.

The input (pymw_write_location) and output
(pymw_read_location) functions for the Condor
interface read or write to files when called from PyMW. This
is because input and output is required to be in file format
when submitting tasks through condor_submit. However,
when executing the tasks these functions read/write standard
input and output. This demonstrates how PyMW allows
the user program to function in multiple environments with
varying input/output methods.

After the task is completed on a worker, Condor updates
a task specific log file. Because there may be hundreds or
thousands of simultaneously executing tasks, result checking
is performed by a single separate thread. The result handler
thread periodically checks the log files and notifies completed
tasks. The log and error files are removed after task comple-
tion, and any Condor errors are relayed to the user.

B. BOINC

PyMW was originally conceived to support BOINC appli-
cation development by providing a simple Python interface
for the BOINC platform. As previously discussed, a barrier
to common usage of the BOINC platform and other volunteer
computing environments is the preparation required to run an
application. In BOINC, multiple programs must be modified
by the developer, including a work generator, server, result
validator and a result assimilator. The goal of this interface is
to automatically manage these, so developers can focus on the

BO
IN

C
Vo

lu
nt

ee
r

Co
m

pu
tin

g
Pl

at
fo

rm
PyMW Layer

Worker

BOINC Interface

.....

Result
Handler

create_work
program

SQL
database Server

Worker Worker

validator
program

assimilator
program

Fig. 4. BOINC Interface and task flow.

application. The BOINC interface of PyMW is accompanied
with a setup script that configures a BOINC project to handle
PyMW applications. This script creates and registers a special
BOINC worker application for PyMW, and installs BOINC
components to interact with PyMW. The result is that users
can write programs with PyMW that will execute transparently
in the BOINC environment.

The flow of tasks through the PyMW BOINC interface
and BOINC platform is shown in Figure III-B. The user
submits tasks to PyMW using the submit_task function.
The BOINC interface uses the BOINC create work program
to generate tasks. This involves copying the input data to a
BOINC specified location, creating input and output template
files and executing the create work program to insert the task
into the database. Later, the server reads the task from the
database and distributes the program and data to the workers.

The workers execute a copy of the BOINC worker, which
periodically contacts the server and requests tasks. The server
sends tasks to the workers, which download the program
and input data from the appropriate location. Because many
computers do not have Python installed, the program is a
Python interpreter and the input data is the user program and
task data. The interpreter executes the user program with the
data file and takes care of initialization and cleanup. The
worker then uploads the result to a specified location and
notifies the BOINC server.

To ensure result correctness, some projects execute the same
program on different workers and compare the results using
a validator program. A validator for PyMW is automatically
installed by the setup script mentioned above to handle the
validation of PyMW tasks. After successful task validation
PyMW must be notified of the available results. The PyMW
setup script installs an assimilator component for BOINC,

which copies result output files of PyMW applications to the
PyMW working directory. The BOINC interface spawns a
result handler thread during initialization, which periodically
checks the PyMW working directory for new result output
files. When an output file appears, the corresponding task
object is notified through task_finished.

IV. EXPERIMENTS

To test the effectiveness of PyMW in performing master-
worker computations, we wrote two Python programs using
the PyMW module. These programs represent example appli-
cations for PyMW - a Monte Carlo style simulation and a test
for prime numbers. These programs were run on two platforms
- a small desktop grid running Condor and a BOINC project.
Except for changes to select the interface, the programs were
identical across all platforms. Each program was executed
as a Python script with no special environment variables or
optimizations. We describe the programs and experimental
setup in Section IV-A and the results in Section IV-B.

A. Experiment Setup

The first program is a simple Monte Carlo program [16]
which estimates the value of pi by randomly selecting points
in a unit square. For n selected points with m of the points
satisfying x2 + y2 ≤ 1, the value of pi is estimated as 4m/n.
This uses the master-worker model by giving p workers each a
task to test n/p points and return m. For the Condor interface
108 points were tested and for the BOINC interface 109 points.
The total program size is 70 lines of Python code. Listing
1 shows a version the Monte Carlo PyMW code for the
Condor interface. This program performs master-worker style
computation by submitting a set of tasks to the master, then
retrieving the results as they are completed. As shown in this
example, PyMW can execute complex programs in parallel on
arbitrary platforms with minimal additional code.

The second program finds prime numbers of the form n2+1
for integers in the range [1, n]. The input to the worker
program is the range of integers [i, j] to search. This program
uses the Miller-Rabin test [17] (k=50) to probabilistically
guarantee the primality of each number. A value of k = 50
means each integer is checked at most 50 times by the Miller-
Rabin test and that any number stated to be prime by the
test has a probability no greater than 4−50 of actually being
composite. For both interfaces, the range [1, 100000] was
tested. The total program size is 90 lines of Python code.

For each platform, we performed experiments to determine
the effect of number of workers on total run time. The
experiments for the Condor interface were run on a desktop
grid containing a total of 12 cores running around 2.8 GHz
each with Windows XP and Vista. The BOINC experiments
were run on a BOINC project with a dozen workers of varying
hardware running Linux and Windows.

B. Experiment Results

The results for the Condor platform are shown in Figure
5. These figures show the total execution time and per-task

Listing 1. Monte Carlo PyMW code using the Condor interface.
def c h o o s e p o i n t () :

p t = math . pow (random () , 2) + math . pow (random () , 2)
i f p t <= 1 : re turn 1
e l s e : re turn 0

def monte p i (r and seed , n u m t e s t s) :
random . seed (r a n d s e e d)
num hi t s = 0
f o r i in x ra ng e (n u m t e s t s) :

num hi t s += c h o o s e p o i n t ()
re turn num hi t s

n t a s k s , n t e s t s = 10 , 1000000000

i n t e r f a c e o b j = C o n d o r I n t e r f a c e ()
pymw master = PyMW Master (i n t e r f a c e = i n t e r f a c e o b j)

t a s k s = [pymw master . s u b m i t t a s k (monte pi ,
i n p u t d a t a =(random . random () , n t e s t s / n t a s k s) ,
modules =(” random ” , ” math ”) ,
d e p f u n c s =(c h o o s e p o i n t ,))

f o r i in r a n g e (n t a s k s)]

num hi t s = 0
f o r i in r a n g e (n t a s k s) :

r e s t a s k , r e s u l t = pymw master . g e t r e s u l t ()
num hi t s += r e s u l t

p r i n t 4 ∗ f l o a t (num hi t s) / n u m t e s t s

execution time for a number of tasks. The upper graph in
each figure shows the mean and standard deviation of total
execution time from 3 experiment runs.

One important aspect of desktop grid systems is the initial-
ization time and task submission overhead. Figure 5(a) shows
the time for null tasks to be processed by the Condor system.
In this case, a null task is a task that does no calculation and
immediately returns the input. As seen in the lower half of
Figure 5(a), the initialization time for submitting tasks with
the Condor PyMW interface is around 4 seconds. The average
overhead per task when submitting large numbers of tasks is
less than 1 second, demonstrating the effectiveness of PyMW
for performing large batches of tasks on desktop grids.

Figures 5(b) and 5(c) show the execution times for the
Monte Carlo and prime tester applications. In both applica-
tions, total execution time decreases to a certain point, but
additional tasks do not significantly affect total runtime. The
Monte Carlo program has a maximum speedup of around
4.9x while the prime tester has a speedup of around 5.4x.
For large numbers of tasks with longer computation time, this
speedup should be nearly linear. These results demonstrate the
scalability of PyMW of performing applications on a Condor
based desktop grid platform.

The initialization time and overhead in the BOINC interface
varies depending on how many tasks are submitted. Upon
submission the BOINC interface copies the task input data to
the appropriate BOINC project directory and registers the task
in the BOINC database. This introduces overhead from system
calls and database operations. Table I shows the overhead for
different numbers of submitted tasks, as well as total exection

Total Execution Time
Time Per Task

Se
co

nd
s

pe
r T

as
k

0

2

4

To
ta

l T
im

e
(s

ec
on

ds
)

10

100

Number of Tasks
1 10 100

Null Tasks on Condor Interface

(a) Null task test results.

Total Execution Time
Time Per Task

Se
co

nd
s

pe
r T

as
k

1

10

100

To
ta

l T
im

e
(s

ec
on

ds
)

50

100

150

Number of Tasks
0 5 10 15 20 25

Monte Carlo on Condor Interface

(b) Monte Carlo program results.

Total Execution Time
Time Per Task

Se
co

nd
s

pe
r T

as
k

10

100

To
ta

l T
im

e
(s

ec
on

ds
)

100

200

300

Number of Tasks
0 5 10 15 20 25

Prime Tester on Condor Interface

(c) Prime tester program results.

Fig. 5. Condor interface results.

TABLE I
TASK TIMES FOR THE BOINC INTERFACE.

Tasks Interface Overhead Monte Carlo Prime Tester
102 5 seconds 4 mins 16 mins
103 2 minutes 6 mins 13 mins
104 15 minutes 22 mins 22 mins

TABLE II
TIME TO COMPLETE 10 TASKS PER WORKER (INCLUDING

UPLOAD/DOWNLOAD)

Task size Total tasks Monte Carlo Prime Tester
Large 102 3.5 mins 15 mins

Medium 103 30 secs 1.1 mins
Small 104 15 secs 15 secs

times of the three tests. Although job submission can get
slower if large numbers of tasks are submitted, it should be
noted that BOINC can simultaneously handle task submission
and task processing, meaning that as soon as the first tasks are
submitted the workers can download and process them.

The worker side of BOINC downloads input files and
uploads output files to the server, before and after processing
respectively. Input and output files of the tested programs
are less than a kilobyte in size, so the overhead is only a
few seconds. Each worker downloaded ten tasks per session,
adding approximately ten seconds of upload and download
overhead to the actual processor times. The process of result
validation and assimilation also introduces a few seconds
overhead. The three tests we ran for the programs consisted
of 102, 103 and 104 tasks. Table II shows the time spent
by one worker to process ten tasks of varying size. Because
the workers do not exclusively perform BOINC tasks, total
execution time can vary greatly. Although these results show
that BOINC adds significant overhead, BOINC oriented tasks
often take hours or days to complete, meaning this overhead
will be negligible for most BOINC programs.

From these experiments, we see that PyMW provides a
scalable interface for running master-worker style parallel
Python programs on the Condor and BOINC platforms. The
overhead of PyMW varies depending on the platform, but in
general is very low relative to the expected total task runtime.
We also see that PyMW can handle large numbers of tasks
without significant slowdown.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the PyMW Python module
for parallel distributed master-worker style computation. The
module is designed to allow easy usage of various computing
platforms by inexperienced scientists and programmers, with
emphasis on desktop grids and volunteer computing systems.
At the same time, it is intended to be extendable through
interfaces to support additional platforms and functionality. We
demonstrated through experiments that PyMW can be used to
write parallel programs that run on a variety of platforms and
scale well.

In future work, we hope to extend the functionality of
PyMW. In addition to supporting more computing platforms,

PyMW will also give the user more control to determine task
status, kill tasks and run non-Python worker programs. To
support very long computations, PyMW will allow state freez-
ing and restoring, enabling programs to be restarted without
significant recomputation in the case of a crash. We also plan
to use PyMW to introduce a new type of BOINC project –
called PyBOINC – to support users needing massive com-
puting power for master-worker style computing. The current
version of PyMW is available at http://pymw.sourceforge.net/

ACKNOWLEDGMENTS

This work was supported in part by Research Fellow-
ship (19·55401) and Grant-in-Aid for Scientific Research
(A)20240002 from the Japan Society for the Promotion
of Science, and by the Global COE Program “in silico
medicine” at Osaka University. The research and development
published in this paper is also supported by the European
Commission under contract numbers LSHC-CT-2006-037559
(FP6/CancerGrid) and RI-211727 (FP7/EDGeS).

REFERENCES

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“Seti@home: an experiment in public-resource computing,” Commun.
ACM, vol. 45, no. 11, pp. 56–61, 2002.

[2] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, “Folding@home
and genome@home: Using distributed computing to tackle previously
intractable problems in computational biology,” Modern Methods in
Computational Biology, Horizon Press, 2003.

[3] “Boinc projects list - http://boinc.berkeley.edu/projects.php.”
[4] “Rocks cluster register - http://www.rocksclusters.org/rocks-register/.”
[5] Parallel python website - http://www.parallelpython.com/.
[6] Pympi - http://pympi.sourceforge.net/.
[7] mpi4py - http://mpi4py.scipy.org/.
[8] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-

tice: the condor experience.” Concurrency and Computation: Practice
& Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[9] I. T. Foster, “Globus toolkit version 4: Software for service-oriented
systems.” in NPC, ser. Lecture Notes in Computer Science, H. Jin, D. A.
Reed, and W. Jiang, Eds., vol. 3779. Springer, 2005, pp. 2–13.

[10] O. Aumage, R. Hofman, and H. Bal, “Netibis: an efficient and dynamic
communication system for heterogeneous grids,” Cluster Computing and
the Grid, IEEE International Symposium on, vol. 2, pp. 1101–1108,
2005.

[11] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 4–10.

[12] M. P. Sullivan and D. P. Anderson, “Marionette: a system for paral-
lel distributed programming using a master/slave model,” Tech. Rep.
UCB/CSD-88-460, Nov 1988.

[13] E. Heien, A. Kornafeld, Y. Takata, and K. Hagihara, “Pymw - a python
module for parallel master worker computing,” Tech. Rep., 2008.

[14] J. Basney and M. Livny, “Deploying a high throughput computing
cluster,” in High Performance Cluster Computing: Architectures and
Systems, Volume 1. Prentice Hall PTR, 1999.

[15] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” in Grid
Computing: Making the Global Infrastructure a Reality. John Wiley
& Sons Inc., Dec 2002.

[16] J. Amar, “The monte carlo method in science and engineering,” Com-
puting in Science & Engineering, vol. 8, no. 2, pp. 9 – 19, Mar 2006.

[17] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of
Number Theory, vol. 12, no. 1, pp. 128–138, 1980.

