Computing Low Latency Batches with Unreliable Workers in Volunteer
Computing Environments

Eric M. Heien, Noriyuki Fujimoto, Kenichi Hagihara
Graduate School of Information Science and Technology, Osaka University
Toyonaka, Osaka 560-8531, Japan
{e-heien, fujimoto, hagihara} @ist.osaka-u.ac.jp

Abstract

Internet based volunteer computing projects such as
SETI@home are currently restricted to performing coarse
grained, embarrassingly parallel tasks. This is partly due
to the “pull” nature of task distribution in volunteer com-
puting environments, where workers request tasks from the
master rather than the master assigning tasks to arbitrary
workers. In this paper we develop algorithms for computing
batches of medium grained tasks with soft deadlines in pull-
style volunteer computing environments. Using assump-
tions about worker availability intervals based on previous
studies, we develop models of unreliable workers in volun-
teer computing environments. These models are used to de-
velop algorithms for task distribution in volunteer comput-
ing systems with a high probability of meeting batch dead-
lines. We develop algorithms for perfectly reliable work-
ers, computation-reliable workers and unreliable workers.
The effectiveness of the algorithms is demonstrated by using
traces from actual execution environments.

1 Introduction

In recent years, public-resource computing or “volunteer
computing” projects have demonstrated the power of per-
forming distributed computation using donated resources
over the Internet. Projects such as SETI@home [3] and
Folding@home [11] sustain computation speeds of tens or
hundreds of teraflops, comparable with high end supercom-
puters. In these projects, computational tasks are distributed
and executed on donated computers around the world.

Volunteer computing (VC) systems use a master-worker
style of computing, where tasks are distributed from a mas-
ter machine to worker machines and executed. Because
such systems are composed of donated resources, they can
make few guarantees about network or machine reliability.
Therefore volunteer computing is usually applied to coarse

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

grained embarrassingly parallel computation with tasks that
require hours or days to complete. Also, because of the
volatile nature of the donated resources, task completion
deadlines are generally on the order of days or months.

VC environments differ from traditional grid computing
environments in several important ways. First, because the
worker machines in VC systems are owned by private indi-
viduals, communication and computation reliability is sig-
nificantly lower. A worker machine may often be discon-
nected from the network, or used for other purposes without
advanced warning. Second, worker machines are often be-
hind firewalls and NATs which allow only worker to master
connections. This means that a “pull” model of task distri-
bution must be used, instead of the common “push” model
where the master distributes tasks to arbitrary workers.

In this paper, we propose algorithms for meeting batch
deadlines in VC systems given varying degrees of worker
reliability. Rather than normal VC deadlines of days or
months, we deal with deadlines of minutes or hours. We
call this “low latency computing.” For such pull-style task
distribution, the key to meeting batch deadlines is ensuring
that all tasks are distributed to workers in a timely manner
and that workers complete the tasks before the deadline. To
develop suitable algorithms, we first define the environment
and analyze the effect of communication and computation
unreliability in Section 2. Given worker availability dis-
tributions from previous studies, we show how worker task
requests can be modeled as a Poisson process and task com-
putation time can be modeled as a probabilistic distribution.
Using these models, we develop algorithms for task distri-
bution in Section 3. The algorithms are verified using trace-
driven simulations in Section 4. Finally, we review related
work and offer our conclusions in Sections 5 and 6.

2 Computation Model

In order to develop algorithms for task distribution in a
volunteer computing environment, we first define workers,

batches and tasks in Section 2.1. In Section 2.2 we examine
communication reliability in workers and use simulations
to demonstrate that connections from semi-reliable workers
can be modeled using a Poisson process. In Section 2.3
we examine computation reliability in workers, and derive
a probabilistic function for deadline satisfaction based on
worker speed and deadline time.

2.1 Computation Environment

In this model for VC low latency batch computing, there
are M batches of work, denoted By,...,Bj;_1. Each
batch B; has N unit-length independent tasks denoted

e,..., Tk _,, asubmission time S; and a soft deadline D;
with S; < D;. All tasks in batch B; are available for dis-
tribution at time S;. Because workers are not fully reliable,
tasks may not finish before the deadline. Our model puts
a probabilistic bound on deadline satisfaction, therefore we
use a soft rather than a hard deadline. Batches are sequen-
tial and do not overlap, i.e. Vi,n, (i < n) = D; < S,. All
tasks are initially on a single master machine. The goal of
the server is to assign tasks to workers such that the number
of tasks completed after their deadlines is minimized.

To compute the tasks, there are P workers
Wo,...,Wp_1. At any given time, a worker is in
one of two states - available or unavailable. The master
is always available. A worker in the available state may
perform computation or communication, an unavailable
worker may do neither. Various factors may cause transi-
tion between these states - user activity/idleness, machine
reboot/shutdown, etc. If a worker transitions from available
to unavailable while executing a task, the task is resumed
at the same point when the worker returns to the available
state. This behavior can be achieved through task check-
pointing. Each worker W; has a task computation time R;,
which is the number of seconds the worker requires in the
available state to complete a task. The reconnection period
T specifies the rate of task requests from a worker.

In this paper, worker unavailability intervals are assumed
to be finite in length. In other words, no workers quit the
computation forever. For actual systems this is not a correct
assumption due to part failures, volunteers ending their par-
ticipation, etc.. Analysis of volunteer computing projects
indicates worker lifetime roughly follows an exponential
distribution with a mean of 3 months [4]. In this paper we
consider low latency batches with deadlines on the order of
minutes or hours. Therefore, the probability of a given task
failing due to a worker quitting is much less than 1% and we
feel it can be ignored without significant loss of accuracy.

In terms of communication and computation, work-
ers can be either reliable or semi-reliable. A worker is
“communication-reliable” if it can guarantee communica-
tion with the master at an arbitrary time C. A worker is

Table 1. Task request simulation parameters.

Parameter Values
Number of workers (P) 500
Length of simulation 3 days

50, 100, 500, 1000,
2000, 5000 secs

Availability distribution Weibull (a, 3)

Weibull shape param. («) 0.5

Mean availability (23) 1000, 10000, 30000 secs

Unavailability distribution Exponential ()

Mean unavailability (1/)) 100, 1000, 5000 secs

Reconnection period (7)

“semi-communication-reliable” if the probability of com-
munication in time [C, C' + §] exponentially increases with
respect to 6. A worker W; is “computation-reliable” if it
can guarantee task completion within a specified time limit
R;, which is the task computation time of the worker. A
worker is “semi-computation-reliable” if the probability of
task completion in time [R;, R; + €] exponentially increases
with respect to e.

2.2 Semi-Comm-Reliable Workers

Next, we examine the effect of worker unreliability on
task requests and propose a model for task requests from
VC workers. To develop a model for semi-communication-
reliable workers, we make assumptions about worker avail-
ability and unavailability intervals, then perform simula-
tions using these assumptions. The results of the simula-
tions indicate that task requests from semi-communication-
reliable workers can be modeled as a Poisson process.

Previous studies show that worker availability interval
lengths can be modeled with a Weibull distribution [13].
We know of no detailed studies of worker unavailability in-
tervals, but based on the results in [9] and our own anal-
ysis, we chose to model short term unavailability interval
lengths (hours or less) as an exponential distribution. Long
term worker unavailability intervals are more erratic due to
business hours, holidays, etc. This is handled separately by
tracking active workers, as described in Section 3.2.

Given the distributions of worker availability and un-
availability, we performed simulations to determine a model
for worker task requests. In the simulations, each worker
transitions back and forth between available and unavail-
able, with the time in each state determined by sampling the
above mentioned distributions. Each worker W; connects
to the master at an exponentially distributed initial time
C; = Exp(A = 1/T). After each connection, the worker
is assigned a new connection time C; = CurTime() + 1.
If a worker is unavailable at time C;, the connection is ini-
tiated when the worker becomes available. Worker connec-
tion times were recorded, and we analyzed the distribution

Table 2. Mean interconnection gap lengths (seconds).

Mean Availability 1000 10000 30000
Mean Unavailability | 100 | 1000 | 5000 | 1000 [5000 [1000 [5000
T T/P
50 0.1 0.1129 | 0.2062 | 0.6191 | 0.1185 | 0.1748 | 0.1135 | 0.1434
100 0.2 0.2171 | 03915 | 1.174 | 0.2305 | 0.3400 | 0.2210 | 0.2793
500 1.0 1.024 1.606 4.607 1.105 1.618 1.064 1.343
1000 2.0 2.027 2.813 7.378 2.160 3.119 2.097 2.622
2000 40 4041 | 4967 | 1097 | 4219 | 5875 | 4.140 | 5.065
5000 10.0 10.13 | 11.12 | 1820 | 1034 | 13.11 | 1025 | 11.88
] 1.0 connections A = P/T and the one on the mean value of
2 2000 7; B 08 S Fhe actual results. The AD test is sensitive 'to imperfections
e 1500] L 3 in large data sets, so 1000 random samplings of 100 data
&] -06 I points each were taken from each data set. The AD p-value
g 1000 3 | o4 % for each of the samplings was calculated, and an average p-
2] L E value was determined. Generally, the minimum acceptable
2 500 02 3 p-value for the AD test is 0.05, so p-values higher than this
0 1 I 0 indicate good fit with the EDF.
0 20 40 60 80 When comparing the samples with an EDF using the ex-

Time Gap (seconds)

Figure 1. Time Gaps Between Connections
(T = 5000, 3 = 5000, A = 10~3)

of time intervals between successive connections. The pa-
rameters for the simulations are shown in Table 1.

The results of one simulation are shown in Figure 1 with
the time gaps between consecutive connections to the mas-
ter plotted as a histogram and cumulative fraction. All re-
sults showed a similar pattern. Table 2 shows the mean in-
terconnection gaps for given availability and unavailability
intervals, compared with the expected interconnection gap
T/P. As expected, higher levels of worker unavailability
give a higher mean interconnection gap. This shows that
for short unavailability intervals, A = T'/P is a good ap-
proximation of mean interconnection time.

Hypothesis 1. Let T be a positive time period. Let P work-
ers with Weibull availability intervals and exponential un-
availability intervals be assigned connection times as de-
scribed previously. After each worker connects, it is as-
signed a connection time at T seconds in the future. Then
the time gap between connections can be modeled as an ex-
ponential distribution function (EDF).

To confirm Hypothesis 1, we applied the Anderson-
Darling test (AD) [5] to all simulation results. We chose
this test instead of the Kolmogorov-Smirnov test (KS) be-
cause of its higher sensitivity [15]. Tests were conducted
to compare the simulation results with EDFs using differ-
ent \ parameters - one based on the expected time between

pected mean, average p-values ranged from 0O to 0.284. Sim-
ulations with high worker unavailability tended to have low
p-values. However, when comparing the samplings to an
EDF with mean equivalent to the data set, average p-values
ranged between 0.205 to 0.296. A process with time be-
tween events following an EDF is defined as a Poisson pro-
cess. Based on these results we offer Hypothesis 2.

Hypothesis 2. Let T' be a positive time period. Then con-
nections from P semi-communication-reliable workers can
be modeled as a Poisson process. For workers with high
availability, the process rate parameter is A\ ~ P/T.

2.3 Semi-computation-reliable Workers

Next we propose a model for worker reliability in re-
gards to computation speed and task deadlines. This model
is based on the same assumptions of worker availability and
unavailability interval distributions as the previous section.

We assume that the ratio of availability to unavailability
is high, and tasks are sufficiently short such that a worker
experiences either zero or one unavailability intervals while
performing a task. Suppose a task is distributed to worker
W; at an arbitrary time C' during the availability interval.
The worker then requires R; seconds in the available state to
complete it. If the availability interval length is Weibull dis-
tributed, the probability of the worker completing the task
before entering the unavailable state is:

v = Pr(Weibull(a, 3)/2 > R;) = e~ GR/B" (1)
Then the total task completion time X is given by:

X =R;+ (1—7)Exp()))

where Exp()) represents the unavailability interval length
and is a random exp. distributed value with mean 1/A. The
probability of this time being less than the deadline D is:

D—R;

J(D,R)=1—e 17 3)
3 Task Distribution Algorithms

In order to meet batch deadlines, tasks must be dis-
tributed to workers in a timely manner. Pull-style volun-
teer computing task requests go from workers to the mas-
ter. Thus, a sufficient number of task requests must occur
between the batch submission and deadline. In a VC sys-
tem, this is done by requesting workers to connect at certain
times. This is known as the “reconnection time” and is de-
noted C; for worker Wj.

In this section, we describe algorithms for ensuring a
high probability of sufficient task requests to complete all
batches before their deadlines. Section 3.1 presents an
algorithm for fully reliable (communication-reliable and
computation-reliable) workers, and proves that it satisfies
all deadlines in certain conditions. In Section 3.2 we pro-
vide an algorithm for semi-communication-reliable work-
ers with a probabilistic bound on failure. The algorithm
for semi-reliable (semi-communication-reliable and semi-
computation-reliable) workers is given in Section 3.3, and
also provides a probabilistic bound on failure. The effec-
tiveness of these algorithms is demonstrated in Section 4.

3.1 Fully Reliable Homogeneous Workers

In this section we consider fully reliable workers, with
guaranteed communication and computation times. Work-
ers are considered computationally homogeneous and reli-
able, meaning that a task always takes R seconds and fin-
ishes at time C; + RR. To meet the deadline D;, all tasks in
B; must be distributed to workers before time L; = D; — R.
We assume that all workers connect before S.

In this algorithm the master accepts worker connections,
sends an undistributed task to the worker from the current
batch and notifies the worker of their next connection time
C;. Worker W; connects at time C; or immediately if the
current time is past C';. Upon connection the worker re-
ceives a task and next connection time, then executes the
task. The algorithm for the master is shown in Algorithm 1.
The workers are fully reliable, so the algorithm only needs
to ensure that [V task requests occur during each batch.

Given this algorithm and constraints on the task length,
deadline/submission times, and number of tasks/workers,
Theorem 1 proves that all batches will meet their deadlines.

Theorem 1. Algorithm I results in all batches meeting their
execution deadlines if and only if Vi, D; > S; + R(%}.

Algorithm 1 Fully Reliable Homogeneous Workers
1: AssignBatch «— 0, AssignTask «— 0
2: SendBatch «— 0, SendTask «+— 0
3: while SendBatch < M do
4: Get connection from W

5: if CurrentTime() > SsendBatch then
6: Send task T§endBateh 1o 1/
7: SendTask — SendTask + 1
8: endif
9: if SendTask > N then
10: SendTask < 0, SendBatch «— SendBatch + 1
11: endif
12: if AssignBatch < M then
13: Cj — SassignBatch +AssignTask* (L assignBateh —
SAssz'gnBatch)/(N - 1)
14: Send reconnection time C'; to W;
15: AssignTask — AssignTask + 1
16: endif
17: if AssignTask > N then
18: AssignTask — 0
19: AssignBatch «— AssignBatch + 1
20: end if

21: end while

Proof. Proof by induction. At time Sy, by definition no
workers are executing a task and all P workers have con-
nection times. Next, assume that no workers are executing
a task and all workers have been given connection times at
time S;. We now demonstrate that if D; > S; + R [%] , then
all tasks in B; will be finished at or before D; and at time
Si+1 there will be no workers executing tasks.

If P > N then at time .S; all tasks for batch B; have been
assigned, and each worker will receive at most 1 task from
the batch. The latest task distribution time will be .S; + (/N —
1)% = L, = D; — R and the latest task completion
time will be D;, meaning that no workers are executing a
task after D;. If D, < S; + R, then L; < S;, which is a
contradiction because no tasks from B; can be distributed

before S;.

If P < N then at time S; only P tasks from batch
B; have been assigned. During the execution of batch
B;, a worker will request and execute either L%J or
[X] tasks. Because a worker executes tasks one by
one, the latest a worker will request a task is at time
maz(L;, R([%] — 1)) and the latest task completion time
will be maz(D;, R[¥1). If D; < S; + R[%], the batch
completion time will be R[&] > D; and the deadline
will not be met. In this case, there can be no guaran-
tees about the execution state of workers at time S;4q. If
D; > S, + R[%], the batch completion time will be D;
and no workers will be executing tasks at S; 1.

Therefore all batches will meet their execution deadlines
if and only if Vi, D; > S; + R[%]. 0O

3.2 Semi-Comm-Reliable Workers

Next we consider homogeneous workers that are
computation-reliable and semi-communication-reliable. In
other words, workers with guaranteed computation but
probabilistically bounded communication times.

In VC environments, predicting the future availability
state of a given worker at a specific time is nearly impos-
sible. Algorithm 1 cannot be used in such environments be-
cause it depends on each worker W; being available at C;.
Note that Algorithm 1 does not request all workers to con-
nect at time S;, but instead spreads out the connections be-
tween .S; and L; to maintain a constant rate of task requests.
In the same way, semi-communication-reliable workers can
meet a deadline by maintaining a stream of task requests.

In Section 2.2, we demonstrated that task requests from
semi-communication-reliable workers can be modeled as a
Poisson process. Given this model, we now determine how
to calculate the connection period 7" so as to distribute all
tasks before the batch deadline. Let V' be the event where
at least NV task requests are sent to the master from P active
workers in a given time period L. Given Hypothesis 2, we
can control the probability K of V occurring by specifying
a reconnection time C based on P, L and V.

The number of task requests occurring in a Poisson pro-
cess follows the Poisson distribution, which gives the prob-
ability of exactly N task requests occurring in a given time
period. Because this is a probabilistic model we can only
put a bound on the probability K of a specified number of
task requests occurring. For a probability K of at least N
task requests in a given time period L, A must satisfy:

N—-1 —A\i
e "\
K>1- ; -)

Given A from this equation, the reconnection period is:

_PL
DY

The number P of active workers can change over long
time periods. Therefore the value of T must change dur-
ing the course of the computation. One way to track ac-
tive workers is to count the number of workers which con-
nected in the last 7' seconds. Algorithm 2 demonstrates
how to use the active worker count to distribute tasks to
semi-communication-reliable workers. This algorithm en-
sures sufficient task requests to the master before the distri-
bution deadline. We demonstrate the effectiveness of this
algorithm in Section 4.

T (&)

3.3 Semi-reliable Workers

Finally, we propose an algorithm to replicate and dis-
tribute tasks to semi-reliable heterogeneous workers. These

Algorithm 2 Semi-Communication-Reliable Homoge-
neous Workers

1: Calculate X\ from K and N; estimate P; T «— %

2: SendBatch «— 0, SendTask < 0

3: while SendBatch < M do

4: Get connection from W

5: if CurrentTime() > SsendBatch then

6: Send task T§endBateh 1o W/

7: SendT'ask «— SendTask + 1

8: endif

9: Cj < CurrentTime() + T; Send C; to W;
10: if SendTask > N then
11: SendTask «— 0, SendBatch <« SendBatch + 1
12: P’ = num workers in last 7" seconds, T" + %
13: endif

14: end while

are semi-communication-reliable and semi-computation-
reliable workers which follow the models in Sections 2.2
and 2.3. As demonstrated, the probability of tasks meeting
a deadline is a function of worker task completion time R,
deadline time D and availability/unavailability intervals. If
R is a significant fraction of D or unavailability intervals are
relatively long, the probability of meeting the task deadline
may be arbitrarily low. Therefore we use task replication to
ensure high probabilities of meeting task deadlines.

In Section 2.3 we derived a model for task completion
rates in VC systems. This model was specified in terms of
J(D, R), the probability of a distributed task meeting the
deadline. Similar to other stochastic scheduling research
[14], we assume the task computation time can be mod-
eled as a random variable. Because we can’t know which
workers will connect at which times, we use the mean task
completion time - denoted R - to calculate J. The mean
task completion time is the mean time among all workers to
complete a unit task when computing at full speed.

If a task is replicated and distributed H times, then the
probability of at least one task meeting the deadline is @ =
1—(1-J(D,R))". Given N tasks, the probability of all
tasks meeting the deadline is £ = Q*V. For a probability of
success F the appropriate number of replicas H is:

N
H(.R) =M= VE) | ®)
In(1—-J(D,R))

Although Equation 6 gives a high number of task repli-
cas, this is only an upper bound. With an intelligent
scheduling algorithm, the number of necessary replicas can
be reduced through various methods. These include - not
sending a replica for a task that has already been completed,
favoring replication for tasks on slow machines and favor-
ing replication for tasks distributed closer to the deadline.

Algorithm 3 shows the master task distribution algorithm
for semi-reliable heterogeneous workers. This algorithm is

similar to Algorithm 2, except that we create replicas of the
tasks and assign reconnection times such that all replicas
are distributed with high probability. Because Algorithm 3

Table 3. Task request simulation parameters.

Parameter Experiment Number
is based on the above model, it ignores whether a task has 1 2 3 4
been completed when deciding to make a replica. Number of Batches (M) 32 16 64 64
Tasks per Batch (V) 64 128 | 64 | 128
Algorithm 3 Semi-Reliable Heterogeneous Workers A derived from K, N 93 167 | 93 | 167
1: Calculate A from K, N, H; estimate P; T «— £E Batch Deadl?ne. (D) 1024 | 2048 | 512 | 1024
2: SendBatch « 0, SendTask «— 0, ReplTask < 0 Batch Submission () So = 0;8i41 = Si + D
3: while SendBatch < M do Task Completion Time (R) 256 seconds
4: Get connection from W Target Success Probability (K) 0.999

if CurrentTime() > SsendBatch then
Send task T§endBateh 1o 1/
SendTask «— SendTask + 1
end if
9: Cj « CurrentTime() + T; Send C; to W;
10: if SendTask > N then

A

11: ReplTask < ReplTask + 1, SendTask < 0
12: endif

13: if ReplTask > H then

14: ReplTask «— 0, SendBatch «— SendBatch + 1
15: P’ = num workers in last 7" seconds; T %
16: end if

17: end while

4 Experiments

We conducted a series of experiments to test the algo-
rithms in Sections 3.2 and 3.3. Simulations were imple-
mented with the SimGrid distributed application simulator
[12]. For these experiments, we used execution availabil-
ity traces taken from several sources [9]. These availabil-
ity traces were taken from a computer department cluster
(LRI - about 40 workers), desktop PCs in an undergraduate
classroom (DEUG - about 40 workers) and desktop PCs at
the San Diego Supercomputing Center (SDSC - about 200
workers). There are currently no trace sets from VC sys-
tems, though the XtremLab project [1] is working to obtain
such traces. To approximate a VC environment, we com-
bined the LRI, DEUG and SDSC trace sets.

4.1 Semi-Comm-Reliable Workers

To confirm that Algorithm 2 provides sufficient task re-
quests from workers, we performed experiments using the
trace data described above. Although this trace data is not
from semi-communication-reliable workers, the main pur-
pose here is to demonstrate the efficacy of Algorithm 2
rather than simulate a realistic environment. The parameters
for the experiments are shown in Table 3. These parameters
were selected to represent a range of possible low latency
applications, from large batches with a long deadline (Ex-

periment 2) to small batches with short deadline (Experi-
ment 3). The experiment results are shown in Figure 2.
The figures show the active worker count at the start of
each batch, and the number of task requests received dur-
ing each batch. The dark histogram represents the number
of task requests that arrived before the batch computation
deadline, while the light histogram represents the number of
task requests that arrived before the batch distribution dead-
line. The horizontal line is the minimum number of task
requests needed to successfully complete the batch. Each
result shown is based on trace files from separate days.

I3 200 — : o 200 :

(] Q

£ * g

o | o

= = 100

j2) j23

g g

3200 3200

& &

3] .

&00‘ ‘1‘0‘2‘0‘3‘0 "_508\\\\5‘\\\\1‘0\\\\1‘5

Batch Number Batch Number
(a) Experiment 1 (b) Experiment 2
200 -

4 4

g i 5200 | ! ;

X X

o _t o 1

=10 = 100 -

j2} - j2}

@ 7 @

]] 1

g200 4 g 200 —

< i

] 2] |

g 0 T T T & 0 1 T T
0 20 40 60 0 20 40 60

Batch Number Batch Number

(c) Experiment 3 (d) Experiment 4

m Task Requests before Distribution Deadline
. Total Task Requests ~ —— Minimum Required Connections

— Active Workers

Figure 2. Semi-comm-reliable results

These results show that Algorithm 2 generates sufficient
task requests. In all experiments, the algorithm had dif-
ficulty during the first few batches due to inaccuracies in
counting active workers at the beginning of each experi-

Table 4. Semi-reliable worker simulation

Parameter Parameter Values
Number of Batches (M) 16, 32
Tasks per Batch (V) 8,16, 32, 64

Batch Deadline (D)

Batch Submission (.5;)

Avg. Task Completion Time (R)
Task Replication (H)

512, 1024, 2048, 4096
So=0;Si41=85;+D
256 seconds
2, 3, 4 copies

ment. Figure 2(c) shows that batches with relatively short
deadlines have trouble in receiving enough task requests.
This is likely because task execution with a short deadline
is highly sensitive to even short unavailability intervals. An-
other point worth noting is the sudden lack of task requests
during batch 30 in Figure 2(a). This is because of a sud-
den drop in active workers, and demonstrates a fundamen-
tal weakness in low latency batch computing with semi-
reliable workers. This weakness is that unexpected drops
in active workers can cause missed deadlines. From these
results, we feel confident that Algorithm 2 and the model
described in Section 2.2 are useful and valid for ensuring
sufficient task requests to meet low-latency batch deadlines
in VC systems.

4.2 Semi-Reliable Workers

In these experiments, we used a variety of parameters to
test the efficacy of Algorithm 3 in meeting deadlines. For
comparison, we used two other algorithms in the simula-
tions, labeled Algorithms B1 and B2. Algorithm B1 is sim-
ilar to Algorithm 3, except that it computes the connection
period as T' «— (P’'L)/(HN) instead of using the Poisson
model. Algorithm B2 uses a feedback loop to alter the con-
nection period after each batch deadline passes. If any tasks
missed the deadline, Algorithm B2 decreases the connec-
tion period proportional to the fraction of tasks that missed
the deadline. Otherwise, it increases the connection period
proportional to the latest task completion time relative to
the deadline. Experiments were conducted using 7 separate
days of trace data. Two of these days (days 5 and 6) con-
tained high levels of host downtime, which is apparent in
the results. Experiment parameters are shown in Table 4.

Plots of the experimental results is shown in Figures 3(a)
and 3(b). Each figure shows the average number of tasks
per batch that met the deadline, and the fraction of batches
where all tasks completed before the deadline. The results
are plotted for a period of 7 days for each parameter tested.

Figure 3(a) shows the effect of replication in each of
the algorithms for replication levels of H = 2,3,4. Itis
clear that more task replication improves the effectiveness
of all algorithms, but it shows the greatest efficacy for Al-
gorithms 3 and B1. This is likely because the feedback loop

algorithm (B2) ignores the fraction of replicas completed on
time when deciding how to alter the reconnection period.

Figure 3(b) shows the effect of each algorithm from
varying deadline lengths. For a short deadline of D = 512,
it is natural that all the algorithms fail to perform well. For
longer deadlines, all algorithms perform better, but Algo-
rithm B2 seems to hit a plateau. This is likely because a
longer deadline means greater fluctuation in the reconnec-
tion period as Algorithm B2 attempts to find an optimal pe-
riod. It is worth noting that in many simulations with short
deadlines Algorithm B2 performed best. This is because it
quickly drove the reconnection period towards 0, resulting
in all hosts constantly connecting to the master server.

32
30 — 77N
28 —uNf ;
26 -

Meeting Deadline
~

Fraction of Batches Average Tasks
Successful

Meeting Deadline

Successful

Fraction of Batches Average Tasks

345

T
3
D=512 D=1024 D=2048

(b) Effect of Deadlines on Batch Success (M=32, N=64, H=3)

‘ — Algorithm 3 ——- AlgorithmB1 = Algorithm B2

Figure 3. Semi-reliable experiment results

These results demonstrate the effectiveness of using Al-
gorithm 3 for task distribution under soft deadlines. The
non-probabilistic Algorithm B1 often performs similarly
with high task replication, but fails to take into account host
unreliability and therefore consistently underperforms Al-
gorithm 3. The feedback loop based Algorithm B2 under-
performs the other two algorithms because it can only react
to failed batches, not predict future success. It is interesting
to note that high average task success rates (e.g. Figure 3(b),
D = 1024) don’t always translate into high batch success
rates because a single late task can delay an entire batch.

5 Related Work

Previous work has studied task distribution in pull-style
grid and VC environments [6] [8]. Our algorithms differ
from prior research in that they use reconnection requests
to semi-reliable workers in order to satisfy soft deadlines.

There has been similar work in regards to completing
batches of tasks in desktop grid environments [10]. This
study viewed the model of batches as a buffer with tasks
periodically entering and expiring from the buffer. The au-
thors analyzed the appropriate buffer size to ensure maxi-
mum task completion rates in a desktop grid environment,
where tasks can be assigned to arbitrary workers. Future
work could investigate means of combining this buffering
mechanism with reconnection times.

One technique for handling unreliable workers is the use
of checkpointing or “heartbeats” to the master server [7]. In
this technique, workers periodically report and/or save their
progress to the master server. This allows for duplication of
tasks which are unlikely to meet the deadline. However, we
believe that this would not be useful in low latency because
of the short task short computation time.

6 Conclusion and Future Work

In this paper we proposed models for semi-
communication-reliable and semi-computation-reliable
workers in a volunteer computing environment. These
models were used as a base for several task distribution
algorithms aimed at low latency batch VC. The algorithms
were validated using execution availability trace data.

This study dealt only with environments containing be-
tween 100-200 active workers. In actual VC systems the ac-
tive worker count can reach hundreds of thousands. In this
case, Algorithms 2 and 3 would send reconnection times on
the order of days or weeks. This conflicts with worker attri-
tion rates and thus the algorithms would likely fail in such
a scenario. Future work could focus on schemes to group
workers and perform simultaneous batches.

The current model for task replication is overly pes-
simistic and could be improved. In future work, we also
intend to better integrate the task completion model with
Algorithm 3 for more intelligent task distribution. Finally,
to make practical use of these results we plan to to study
methods for integrating low-latency batch computing in ex-
isting volunteer computing systems such as BOINC [2].

Acknowledgments

This work was supported in part by Research Fellow-
ship (19-:55401), and Grant-in-Aid for Young Scientists
(B)(18700058) and Grant-in-Aid for Scientific Research

(B)(18300009) from the Japan Society for the Promotion
of Science, and by the Global COE Program “in silico
medicine” at Osaka University.

References

[1] Xtremlab web site - http://xw01.1ri.fr:4320/, October 2007.

[2] D.P. Anderson. BOINC: A system for public-resource com-
puting and storage. In R. Buyya, editor, 5th International
Workshop on Grid Computing (GRID 2004), 8 November
2004, Pittsburgh, PA, USA, Proceedings, pages 4-10. IEEE
Computer Society, 2004.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56-61, 2002.

[4] D. P. Anderson and G. Fedak. The computational and stor-
age potential of volunteer computing. In CCGRID, pages
73-80. IEEE Computer Society, 2006.

[5] T. W. Anderson and D. A. Darling. Asymptotic theory of
certain goodness of fit criteria based on stochastic processes.

Annals of Mathematical Statistics, 23:193-212, 1952.

[6] K. Budati, J. Sonnek, A. Chandra, and J. Weissman. Ridge:
combining reliability and performance in open grid plat-
forms. In HPDC ’07: Proceedings of the 16th interna-
tional symposium on High performance distributed comput-
ing, pages 55-64, New York, NY, USA, 2007. ACM Press.

[7]1 D. Kondo, F. Araujo, P. Domingues, and L. Silva. Validating
desktop grid results by comparing intermediate checkpoints.
Technical Report TR-0059, Institute on System Architec-

ture, CoreGRID - Network of Excellence, October 2006.
[8] D. Kondo, A. A. Chien, and H. Casanova. Resource man-

agement for rapid application turnaround on enterprise desk-
top grids. In SC’2004 Conference CD, Pittsburgh, PA, Nov.

2004. IEEE/ACM SIGARCH.

[9] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and
H. Casanova. Resource availability in enterprise desktop
grids. Future Generation Computer Systems, 23(7):888—
903, 2007.

[10] D. Kondo, B. Kindarji, G. Fedak, and F. Cappello. Towards
soft real-time applications on enterprise desktop grids. In
CCGRID, pages 65-72. IEEE Computer Society, 2006.

[11] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Fold-
ing@home and genome @home: Using distributed comput-
ing to tackle previously intractable problems in computa-
tional biology. Modern Methods in Computational Biology,
Horizon Press, 2003.

[12] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: the simgrid simulation framework. In
CCGRID, pages 138-145. IEEE Computer Society, 2003.

[13] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed comput-
ing environments. In Euro-Par, pages 432-441, 2005.

[14] J. M. Schopf and F. Berman. Stochastic scheduling. In Su-
percomputing *99: Proceedings of the 1999 ACM/IEEE con-
ference on Supercomputing (CDROM), page 48, New York,

NY, USA, 1999. ACM Press.
[15] M. A. Stephens. EDF statistics for goodness of fit and some

comparisons. Journal of American Statistical Association,
69(347):730-737, 1974.

