PyMW - a Python Module for Parallel
Master Worker Computing

Eric M. Heien, Yusuke Takata, Kenichi Hagihara
Graduate School of Information Science and Technology
Osaka University, Toyonaka, Osaka 560-8531, Japan
{e-heien, y-takata, hagihara} @ist.osaka-u.ac.jp

Adam Kornafeld
Laboratory of Parallel and Distributed Systems
Computer and Automation Research Institute
Hungarian Academy of Sciences
H-1132 Victor Hugo u. 18-22, Budapest, Hungary
kadam @sztaki.hu

Abstract

We describe a general purpose master-worker parallel computation Python module called
PyMW. PyMW provides a unified interface to multiple computation environments including
multicore processors, networked clusters and the Berkeley Open Infrastructure for Network
Computing (BOINC) software platform. PyMW is intended to support rapid development,
testing and deployment of large scale master-worker style computations. It is also designed to
allow easy extension to other computing environments with little change in the master-worker
program. We demonstrate the effectiveness and scalability of PyYMW by performing several
master-worker style parallel computations on a multicore machine, a networked cluster and a
BOINC project.

1 Introduction

In recent years, there has been a surge of interest in parallel computation as development of faster
individual processing cores becomes more difficult. Because of power and heat dissipation lim-
itations, the trend in processor design is to put multiple processing cores on a single chip rather
than increase core speed. Furthermore, other multiprocessor computing environments are becom-
ing more common, including clusters with high speed networks and Internet-connected multi-site
computing grids. To perform parallel computation on these platforms, a variety of software is
available. However, most parallel computing software is oriented towards a particular computing
platform. For example, an OpenMP program cannot fully utilize a computing Grid, and a Grid
program contains more functionality than is needed to run on a cluster.

In addition, interpreted languages such as Python are becoming popular as program devel-
opment time is increasingly dominant relative to execution time. Such languages allow for fast
program development with runtime error checking and the support of numerous software libraries.
Interpreted languages including Python, Java, PHP, and so on, are also platform independent and
may be run on any machine with the proper interpreter. In response to the increased interest in
parallel computing and Python, several software packages have been developed for parallel com-
putation in Python. However, a significant drawback to many of these packages is that they are
designed for only one type of computing platform, usually multicore shared memory processors.

We developed PyMW in response to the need for better Python based parallel computing tools.
PyMW is a Python module designed for master-worker style computations on a wide variety of par-
allel computing platforms. Master-worker parallel computation involves a master process which
sends computational tasks to worker processes. The worker processes often run on separate ma-
chines such as in a cluster or Grid. The worker processes perform their assigned tasks and return
the results to the master. This is repeated until all tasks are complete. Examples of common master-
worker style computations include parameter sweeps, Monte Carlo simulations, ray tracing, and
other work which is easily divisible with little or no dependencies between divisions. A classic
example of large scale master worker computation is the SETI@home [5] project.

The goal of PyMW is to provide functionality for master-worker computation in a Python
module that can be executed in a wide variety of computing environments. The module is designed
to be as simple and general as possible, with the goal of letting users write a single program that can
run on a multicore machine, a networked cluster of computers, or a worldwide computing Grid.
However, at the same time the module should allow the user to interact with platform specific
features (e.g. using half the cores in a multicore machine).

The remainder of the paper is organized as follows. In Section 0.2 we describe the PyMW
module, including the functionality it provides and how programs interact with it. Section 0.3 de-
scribes platform interfaces and the requirements for interface implementations to properly interact
with PyMW. We show the effectiveness of PyMW by running two master-worker style parallel
programs in Section 0.4 on multiple platforms and examining the results. In Section 0.5 we review
related work and finally offer our conclusions in Section 0.6.

2 PyMW

In this section we describe the organization of the PyMW module. This includes descriptions of the
master API in Section 0.2.1, the interface to underlying platforms in Section 0.2.2 and the worker
API in Section 0.2.3.

Although recent versions of Python support multithreaded programs, writing parallel programs
in Python is difficult. This is because the Python interpreter only supports execution of one thread
at a time, regardless of the number of available processors. This limitation can be overcome by
spawning multiple Python interpreter processes communicating through sockets or pipes. How-
ever, even this approach is limited because it introduces security risks in multi-machine environ-
ments, it does not easily work through firewalls, and it can be complicated to implement. Fur-
thermore, customized solutions cannot take advantage of existing features in many computing
environments such as automatic load balancing, checkpointing, computational redundancy, etc.

Rather than designing custom solutions for each computing environment, the philosophy of

User

User
X
@ submit_task() get_result()
PyMW Layer E; *
N 4 » K 5 Run Queue Submitted
Interface Layer‘/ { \ \ = Task List
=
Multicore MPI BOINC Other n>_’ +
Interface Interface Interface Interface Scheduler .
task_finished()
Thread
A

[0)
Multicore MPI BOINC Other S § L
Processor || Cluster Project Platform =5 (reserve_worker()) execute_task())
SE
(a) Abstraction layers of PyYMW. (b) Internal organization of PyMW.

Figure 1: PyMW module details.

PyMW is to utilize existing software as much as possible. For example, most computing clus-
ters contain an implementation of MPI (the Message Passing Interface) [7] which provides fast
communication between processes on different machines. For a volunteer computing environ-
ment, BOINC (Berkeley Open Infrastructure for Network Computing) [4] provides a framework
for packaging and distributing tasks. PyMW uses these software packages to execute tasks on the
underlying hardware for master-worker style Python programs.

In order to use existing software packages and allow extension to multiple parallel computing
environments, PyYMW is divided into two abstraction layers as shown in Figure 1(a). The first
layer is called the “PyMW layer”. It contains functions for the user to submit tasks and retrieve the
results of task execution. This layer also manages task time accounting, error handling and other
platform independent functionality. The PyMW layer layer is fully described in Section 0.2.1.

The second layer is called the “interface layer”. This layer manages the interaction between
the PyMW layer and the underlying software/hardware. For example, on a multicore machine
this layer is responsible for spawning processes to perform tasks and notifying PyMW of their
completion. Depending on what platform the user wishes to use, they will select a different im-
plementation of the interface layer. The functionality of this layer may vary depending on the
underlying hardware. However, all interface layer implementations must at least accept tasks from
the PyMW layer, execute them on their software/hardware and notify the PyYMW layer once a task
is completed. The interface layer is described in detail in Section 0.2.2.

For this paper we implemented interfaces for three types of systems - multicore machines,
networked clusters running MPI and volunteer computing systems running BOINC. Users may
select an interface by changing a line in their program code. By switching interfaces a user can
run a program on a variety of platforms by only making minute alterations to the program code.
For example, this enables program development on a multicore machine, then program testing on
a cluster, and finally deployment on a Grid or volunteer computing platform. By using multiple
interfaces users can employ different platforms in a single program, for example performing a

parameter sweep computation on a cluster then analyzing the results on a multicore machine.

2.1 PyMW Layer

The abstraction layer of PyMW with which the user most directly interacts is the PyMW layer.
This layer is accessed through a PyYMW _Master object which the user instantiates. The interface
used by the PyMW Master object is specified at creation. The master object accepts tasks from
the user and sends them to its associated interface without blocking, allowing the user program to
continue. Users later retrieve the results of task execution through the master object. The PyMW
layer provides functions for executing tasks, retrieving the result of finished tasks and checking
the status of the system. The functions provided by this layer are independent of the underlying
computation system such that a user may write a single program that will run on any platform.
PyMW was designed with two users in mind: the application developer and the interface de-
veloper. To allow applications to use PyMW as simply as possible, PYMW exposes only four
functions to the user. Users may directly interact with the underlying interface for greater control,
but the goal of PyYMW is to allow program development with only the four functions listed below.

master = PyMW _Master(interface=None)

This function creates a new PyMW master object associated with a specified interface. An
interface of None indicates the default multicore interface described in Section 0.3.1. Otherwise,
this is an instantiation of an interface described in Section 0.2.2.

task_object = master.submit_task (executable, input_data=None,
modules=(), dep_func=())

The submit_task function creates a task and submits it to the interface associated with the
master. It returns an object representing the submitted task. The executable must be the path
to a Python script or a user defined function in the current scope. The input_data argument
is a tuple representing the arguments to the function or script. If executable is a function,
the modules and dep_funcs arguments specify what modules and functions are required to
execute the function. If executable is a script, those arguments are ignored. This function
returns immediately.

task , result = master. get_result(task=None, blocking=True)

The get_result function attempts to return a completed task and result. If task is None,
this will return the next completed task, or an arbitrary task if there are multiple completed tasks.
Otherwise this will return the result of a task returned by submit _task. If blockingis True,
get_result will wait until the task has completed before returning. If blocking is not True
and there are no completed tasks, get _result will return None. Passing a task object that has
not been previously submitted with submit_task will raise a TaskException error.

status_dict = master. get_status ()

The get_status function returns a Python dictionary with keys specifying the current status
of the master and its associated interface. The keys for interface status will vary depending on the
interface implementation. The keys for the master status include a list of task objects that have
been submitted with submit_task.

The internal organization of PyMW is shown in Figure 1(b), with the flow of tasks in the
system represented by arrows. First, the call to submit _task creates a task object, which is
put on a run queue and added to the submitted task list. If the user passes a function as the
executable, the source of the function and dependent functions are written to a temporary Python
script file. This file includes PyYMW specific functions for input and output handling. This scheme
allows interfaces to treat all tasks in the same manner and lets users ignore PyMW details when
calling functions in parallel. To prevent blocking, calls to submit_task return immediately. The
scheduler thread removes tasks from the run queue and attempts to match them with a worker from
the interface function reserve worker. After finding a suitable worker, the scheduler thread
calls execute_task in the interface to execute the task. Once the task is completed, the interface
is responsible for calling task_finished on the task object. This causes PyYMW to parse the
resulting output data into a Python object and handle any errors that occurred during processing.
The results of the task are later returned to the user through get _result.

2.2 Interface Layer

The PyMW layer described in Section 0.2.1 interacts with the underlying computational platform
through an interface layer. The interface layer implementation will vary depending on the platform
it supports. This section only describes functionality common to all interface layer implementa-
tions. To properly interact with the PyYMW layer, an interface layer implementation is required to
expose certain functions to the PyMW layer. To simplify development of new interfaces, we tried
to make these functions as simple as possible yet provide flexibility in accommodating different
interface characteristics. The functions provided by the interface layer are described below.

interface .execute_task (task , worker)

An interface implementation must at minimum provide the execute_task function. This
function receives a task object representing the task to be executed, and an interface specific object
representing the worker to execute the task on. If the worker object is None then any worker may
be used. The execute_task function is executed by the PyYMW scheduler in a separate thread
and therefore need not return immediately. Upon completion of the task, it is the responsibility of
the interface to call the task_finished function. If an error occurred during task execution,
the interface layer must pass an Exception object to task_finished describing the error. For
interfaces that expect many long running tasks, it is best to exit execute_task immediately and
use a separate thread to periodically check all tasks and report any that have completed.

worker = interface .reserve_worker(task)

This function returns an object representing the worker to use when executing the task. This
object is interface-specific, and is not used in the PyMW layer. The reserve _worker function
may block if a worker is not available for the task, for example, if the worker is being used for
another task. If the interface does not implement this function, the worker object is set to None.
Future versions of PyMW will allow users to implement reserve_worker functions specific to
their program.

status_dict = get_status ()

This function returns a dictionary of keys with information specific to the underlying platform.
If not implemented, the dictionary is assumed to be empty.

2.3 Application Module

To allow workers to receive input data and return output data, an application layer is provided in
the pymw_app module. This is intended to allow seamless integration of a worker application with
the computing platform it is run on. This module provides two functions to the worker:

input = pymw_get_input()
Returns the object passed as input_data to submit_task in the PyMW layer.
pymw _return_output(output)

Writes an object back to PyMW. This will only return the last object passed to it, so consecutive
calls will overwrite previous objects.

3 Interfaces

As described in Section 0.2.2, the interface layer of PyYMW has different implementations depend-
ing on the underlying platform. In this section, we describe the interface implementation for three
platforms - desktop machines with multicore processors (Section 0.3.1), cluster systems contain-
ing tens or hundreds of networked machines running MPI (Section 0.3.2) and global scale systems
using BOINC running on thousands or millions of machines (Section 0.3.3).

3.1 Multicore

The multicore interface is the default interface for PyMW, and is for use on single machines with
one or more processors. This interface is used by default in PyMW _Master when no interface is
specified by the user. The multicore interface performs master-worker computation on a single
machine through processes spawned by the Python subprocess module. The implementation
of this interface is roughly 70 lines of Python code.

When initializing the interface, the user specifies the number of workers to use, which may be
more than the number of processors in the machine. Because processors in a multicore machine are
homogeneous, the reserve_worker function serves only to ensure that at most one task is run
for each worker. The execute_task function spawns new workers with the Python command
subprocess.Popen, waits for them to complete and reports the task as finished. Load bal-
ancing of worker processes on multiple cores is automatically performed by the operating system.
Any Python or OS errors are caught and reported to the user through task_finished called
from execute_task.

3.2 MPI

The MPI interface for PyMW is intended for use with clusters running an MPI implementation
compatible with the MPI-enabled Python interpreter pyMPI [3]. The interface requires at least
pyMPI 2.4 and Python 2.4 to be installed on the cluster.

The MPI interface was difficult to implement because of limitations in our MPI environment
(SCore 6.0.2.1). Initially, we planned to spawn workers through multiple calls to mpirun. How-
ever, in our environment mpirun is a wrapper to the SCore scrun, which does not allocate new

PyMW Layer
PyMW Layer
(Result)
= - BOINC Interface Handler
esu
MPI Interface
——— 5 E rd
= £ 8 | create_work assimilator
é MPI Manager \/ % f program program
Process >
5 - Worker Manager o2 + f
g | (Rank=0) £3 saL lidat
> 6 Q valigator
0 ¢ \ @ E| database Server program
T g ~a o
= N
Worker Worker Worker
Rank=1 Rank=2 | Rank=N Worker Worker | Worker
(a) MPI Interface and task flow. (b) BOINC Interface and task flow.

Figure 2: PyMW interface details.

jobs in a round robin fashion and would execute all tasks on a single machine. Some versions of
mpirun allow users to specify the host for execution, however ours did not support this feature.
Therefore, an interface for MPI implementations that support host choice or round robin allocation
should be much simpler. However, by launching mpirun only once (during initialization) we
avoid overhead that would become problematic for large numbers of tasks.

The organization of the MPI interface layer implementation is shown in Figure 2(a), with ar-
rows representing the flow of tasks through the interface and cluster. When initializing the inter-
face, the user specifies the number of workers (MPI processes) to start. Rather than running all
of PyYMW in MPI, the MPI interface starts an MPI program with pyMPI and communicates with
it through a socket. The MPI interface sends task information through the socket to the manager
process (MPI rank 0). The task information consists of the location of the executable, and the input
and output files to be used for the task.

The manager process consists of a worker manager written in Python. The worker manager
keeps a list of workers not performing a task. Upon receiving a task from the MPI interface, the
manager forwards the task to an available worker using MPI. If the communication socket closes,
the manager also notifies all workers to quit computation. The manager automatically balances the
computational load since a worker will receive another task when the worker is free. To coordinate
multiple workers, the manager uses the non-blocking functions MPI_TIsend for task distribution
and MPI_Irecv for task completion notification. This is necessary in pyMPI because the normal
MPI_Send and MPI_Recv functions are not compatible with Python multithreading.

The worker processes (MPI ranks 1 to N) wait for new tasks from the manager process using
MPI_Irecv. Upon receiving task information, a process uses the Python subprocess.Popen
function to execute the task, and returns notice of task completion to the manager process with
MPI_Isend. The manager process parses the task completion notice, replaces the worker on the
list of available workers, and sends a notice back to the MPI interface through the socket. At ini-
tialization, the MPI interface spawns a separate thread to handle such task completion notifications.
This thread calls task_finished for completed tasks upon receiving a notification.

The MPI processes are terminated when the interface communication socket is closed. This
handles both normal program completion and errors in the user program. When the socket is
closed, the manager process sends a None task to each worker, causing them to quit.

3.3 BOINC

PyMW was originally conceived to support BOINC application development by providing a sim-
ple and intuitive Python interface for the BOINC platform. A barrier to common usage of the
BOINC platform is the special preparation required to run an application in volunteer computing
environments. In BOINC the full master-worker cycle is supported by multiple programs includ-
ing a work generator, a server, a result validator and an result assimilator. Each of these must be
modified by the application developer. The goal of the PyMW BOINC interface is to automatically
manage as many of these as possible, so developers can focus exclusively on the application. The
BOINC interface of PYMW is accompanied with a setup script that configures a BOINC project to
handle PyMW applications. This script creates and registers a special BOINC worker application
to be used with PyMW, and installs BOINC components which handle interaction with PyMW.
The result is that users can write Python programs with the PyMW module that will execute trans-
parently in the BOINC environment. One goal of PyMW is to significantly increase the number of
applications using BOINC by simplifying application development and deployment.

The flow of tasks through the PyMW BOINC interface and BOINC software platform is shown
in Figure 2(b). The user submits tasks to PyMW using the submit _task function. The PyMW
scheduler passes the tasks to the BOINC interface, which uses the BOINC create_work program
to generate BOINC specific tasks. This involves copying the input data to a BOINC specified
location, creating input and output template files and finally executing the create_work program to
insert the task into the BOINC database. Later, the BOINC server reads the task from the database
and distributes the program and data to the workers.

The workers execute a copy of the BOINC worker, which periodically contacts the server and
requests tasks. The server sends tasks to the workers, which download the program and input data
from the appropriate location. Because many computers do not have Python installed, the program
is a Python interpreter and the input data is the user program and task data. The interpreter executes
the user program with the data file and takes care of initialization and cleanup required by BOINC.
The BOINC worker then uploads the result to a specified location and notifies the BOINC server.

To ensure result correctness, some projects execute the same program on different workers and
compare the results using a BOINC validator program. A validator for PyMW is automatically
installed by the setup script mentioned above to handle the validation of PyMW tasks. After suc-
cessful task validation PyYMW must be notified of the available results. The PyMW setup script
installs an assimilator component for BOINC, which copies result output files of PyMW applica-
tions to the PyMW working directory. The BOINC interface spawns a result handler thread during
initialization, which periodically checks the PyMW working directory for new result output files.
When an output file appears, task_finished is called for the corresponding task object.

4 Experiments

To test the effectiveness of PyMW in performing master-worker computations, we wrote two
Python programs utilizing the PyMW module. These programs represent two possible applica-
tions for PyMW - a Monte Carlo simulation and a parameter sweep. Each of these programs was
run on three platforms - a multicore machine, a networked cluster with MPI and a BOINC project.
Except for changes to select the interface, the programs were identical across all platforms. Each
program was executed as a Python script with no special environment variables or optimizations.
We describe the programs and experimental setup in Section 0.4.1 and the results in Section 0.4.2.

4.1 Experiment Setup

The first program is a simple Monte Carlo program which estimates the value of pi. This program
estimates pi by randomly selecting points in a unit square. If the total number of points is n and the
number of points satisfying 2% + 3> < 1 is m, the value of pi is estimated as 4m /n. This uses the
master-worker model by giving p workers each a task to test n/p points and return m. Each worker
is given a different initial random seed to avoid identical Monte Carlo runs. For the multicore
interface 100 million (10%) points were tested, for the cluster MPI and BOINC interfaces 1 billion
(10%) points were tested. The program is a total of 50 lines of Python code, which includes creating
the PyMW master and interface objects, submitting tasks, performing the Monte Carlo simulation
and gathering the results. A simplified version of the code is shown in Listings 1. This is identical
to the test program except for measuring execution time.

The second program finds prime numbers of the form n? + 1 for integers in the range [1, n).
The input to the worker program is the range of integers [, j] to search. This program uses the
Miller-Rabin test [9] (k=50) to probabilistically guarantee the primality of each number. A value
of k = 50 means each integer is checked at most 50 times by the Miller-Rabin test and that any
number stated to be prime by the test has a probability no greater than 4°° of actually being
composite. Tasks are divided into equal sizes, with three tasks for each worker. For all three
interfaces, the range [1, 100000] was tested. The program is 80 lines of Python code (including
code to measure execution time).

For each platform, we performed experiments to determine the effect of number of workers on
total run time. The experiments for the multicore interface were run on a dual processor quad core
2.83 GHz Intel Xeon (8 cores total) with 4 GB RAM. The cluster experiments were run on a 31
node cluster, with each node using a 2.8GHz dual Xeon processor and 2 GB RAM, connected with
a Gigabit ethernet hub for a total of 62 processors. The BOINC experiments were run on a BOINC
project with a dozen workers of varying hardware running Linux and Windows.

4.2 Experiment Results

The results of the experiments on the multicore platform are shown in Figure 3, and the results for
the cluster platform experiments are shown in Figures 4(a) and 4(b). These figures show the total
execution time given a number of workers. Each time shown is the mean value from 3 experiment
runs. For the multicore interface the standard deviation of the run times for all programs was less
than 5% of the mean, and for the cluster interface less than 10% of the mean.

Listing 1: Monte Carlo Python code.

def throw_dart ():
pt = math.pow(random.random(),2) + math.pow(random.random(),2)
if pt <= 1: return 1
else: return 0O

def monte_pi(rand_seed, num_tests):
random . seed (rand_seed)
num_hits = 0
for i in xrange(num_tests): num_hits += throw_dart ()
return [num_hits, num_tests]

workers = 4

num_tests = 100000000

num_hits = 0

interface_obj = Multicorelnterface (num_workers=workers)

pymw_master = pymw.PyMW _Master(interface=interface_obj)

tasks = [pymw_master.submit_task (monte_pi,
input_data=(random.random () ,num_tests/workers ,), modules=("random”,
dep_funcs=(throw_dart ,)) for i imn range(workers)]

for task in tasks:
res_task , result = pymw_master. get_result (task)

num_hits += result[0]

print 4 x float(num_hits)/ num_tests

”math”)

Monte Carlo and Prime Tester with Multicore Interface

100 —e— Monte Carlo Execution Time
—&— Prime Tester Execution Time

Seconds
Il L1 \H\‘

Seconds
-
o
o

T ‘ T ‘ ‘ T ‘ T ‘ T T ‘ T
0 2 4 6 8 10 12 14 A1
Number of Workers

o "

18

Figure 3: Multicore experiment results.

Table 1: Speedup on 2x4-core machine.

Workers | Monte Carlo | % max | Prime | % max
1 1 100 1 100
2 2.00 100 1.97 98.6
3 2.96 98.7 2.89 96.3
4 3.96 99 3.84 95.9
6 5.97 99.5 5.68 94.6
8 7.76 97 7.36 92.0
12 7.37 92.1 7.43 92.9
16 7.50 93.8 7.51 93.9
Monte Carlo with Cluster Interface Prime Tester with Cluster Interface
—=— Total Execution Time 3 —=— Total Execution Time
£ 1000 —+ Initialization Time] : —— Initialization Time
8 : 8 |
$ i $ 100 é
100]
5 1 5 |
e 02 2 047
5 | S 1
2 01 2 02
8] &]
(' [
0—F T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Workers Number of Workers
(a) Monte Carlo program results. (b) Prime tester program results.

Figure 4: Cluster MPI interface results.

One important aspect of parallel systems is the initialization time and overhead. In PyMW the
initialization time is the time required to instantiate and initialize an interface object and master
object. With the multicore interface, initialization time was measured to be less than 0.01 seconds
for all experiments and therefore is not distinguished from total run time in Figure 3. However,
initialization time in the cluster interface was a significant fraction of total execution time, and is
included in Figures 4(a) and 4(b). During initialization the cluster interface uses the mpirun com-
mand to start multiple MPI processes which can take a significant amount of time. As shown in
both figures, the fraction of total time taken by initialization increases with the number of workers.
The absolute time for initialization also increased with respect to the number of workers. There-
fore, users of this interface must be careful to select a number of workers suitable to the expected
time for computation. It is worth noting that this initialization time is a result of MPI startup in
SCore rather than overhead caused by PyMW.

Figures 3 and 4 show a clear decrease in execution time by using more workers. Figure 3
shows little change between using 8, 12 or 16 workers because it was run on an 8-core machine.
Although additional workers do not improve execution time, neither do they significantly worsen
it. This indicates that PyMW does not add significant overhead when using the multicore interface.
In Figures 4(a) and 4(b) we see improvements in execution time from additional workers, though
the rate of improvement decreases. This is mostly due to the initialization cost mentioned above.

Table 2: Speedup with cluster interface.

Monte Carlo Prime Tester
Workers | Total | % max | Non-init | % max | Total | % max | Non-init | % max
1 1 100 1 100 1 100 1 100
4 2.9 97.7 2.9 98 2.9 95.9 2.9 96.8
8 6.7 95.7 6.8 97.1 5.9 83.9 6.5 92.7

16 142 | 94.7 14.6 97.3 10.7 | 71.6 13.2 88.1
24 20.2 | 87.8 21.8 94.8 159 | 69.2 20.1 87.2
32 26.5 85.5 30.0 96.8 16.6 | 53.8 26.4 85.2
44 350 | 814 41.7 97.0 | 200 | 455 35.2 81.8
62 44.1 72.3 58.8 96.4 | 238 39.1 48.9 80.1

Detailed results regarding the scalability of PyYMW are shown in Tables 1 and 2. These tables
show the speedup of program execution for varying numbers of workers. For example, Table 1
shows a speedup of 3.96x for the Monte Carlo program when using 4 workers. This is 99% of
the theoretical maximum speedup of 4.00x. From this table we see that the Monte Carlo program
achieves excellent parallelism using the multicore interface, even when there are more workers
than processors. The prime program also scales well on multicore, but does not have the same
performance gains as Monte Carlo. This is because the prime program generates more tasks, and
the time for PyMW to start workers and collect results introduces more overhead. Also, the prime
program is non-deterministic in its execution time. Determining whether n is composite takes from
1 to 50 test repetitions, which means the final task may delay completion of the whole program.

Table 2 shows the speedup of program execution using the cluster interface. In this case, we
distinguish between the total execution time and the calculation time (total time minus initialization
time). This is because initialization time becomes a significant fraction of total time as the number
of workers increases, and we want to examine the overhead generated only by PyMW. Similar to
the multicore interface, the cluster interface performs well for the Monte Carlo program. This is
evident when looking at the speedup of only the calculation, which is almost always 95% or more
of the theoretical maximum. Including initialization time, the speedup becomes less impressive as
workers are added. This is because initialization time becomes a greater fraction of total time for
more workers. Table 2 also shows the performance of the prime tester program with the cluster
interface. In this case, the performance improvement is not as good as with the Monte Carlo
program, and also falls behind the prime tester on the multicore interface. This is likely due to the
overhead of the MPI interface to transfer tasks to the worker manager and then the worker.

The initialization time and overhead introduced by the BOINC interface can widely vary de-
pending on how many tasks are submitted. Upon submission the BOINC interface must copy the
input data of the task to the appropriate BOINC project directory and register the task in the BOINC
database. This introduces overhead from system calls and database operations. Table 3 shows the
overhead for different numbers of submitted tasks, as well as total exection times of the three tests.
Although job submission can get slower if large numbers of tasks are submitted, it should be noted
that BOINC can simultaneously handle task submission and task processing, meaning that as soon
as the first tasks are submitted the workers can download and process them.

The worker side of BOINC downloads input files and uploads output files to the server, before
and after processing respectively. Input and output files of the tested programs are less than a kilo-

Table 3: Task times for the BOINC interface.

Tasks | BOINC Interface Overhead | Monte Carlo Total | Prime Tester Total
10? 5 seconds 4 mins 16 mins
10° 2 minutes 6 mins 13 mins
10* 15 minutes 22 mins 22 mins

Table 4: Time to complete 10 tasks per worker (including upload/download)

Task size | Total tasks | Monte Carlo | Prime Tester
Large 102 3.5 mins 15 mins

Medium 103 30 secs 1.1 mins
Small 10% 15 secs 15 secs

byte in size, so the overhead is only a few seconds. Each worker downloaded ten tasks per session,
adding approximately ten seconds of upload and download overhead to the actual processor times.
The process of result validation and assimilation also introduces a few seconds overhead. The three
tests we ran for the programs consisted of 102, 10? and 10* tasks. Table 4 shows the time spent by
one worker to process ten tasks of varying size. Because the workers do not exclusively perform
BOINC tasks, total execution time can vary greatly. Although these results show that BOINC adds
significant overhead, BOINC oriented tasks often take hours or days to complete, meaning this
overhead will be negligible for most BOINC programs.

From these experiments, we see that PyYMW provides a scalable interface for running master-
worker style parallel Python programs on a variety of platforms. The overhead of PyMW varies
depending on the platform, but in general is very low relative to the expected total task runtime.

5 Related Work

The master-worker computation model has been used for many years in a variety of parallel com-
puting environments. An older example of a system using this model is Marionette [10], which
was designed for operation on heterogeneous networks of workstations (NOW). Similar to PyMW,
this aimed to provide a simple interface, but for the C programming language rather than Python.
However, Marionette was intended only for use on NOWs, and was not suitable for use on large
scale platforms nor for multiprocessor machines.

For master-worker style computing in Grids, the Condor [11] and Globus [8] software packages
are commonly used. The IBIS project [6] is also developing software oriented towards multiplat-
form Grid computing in Java that allows sophisticated interprocess communication.

For large scale computations on volunteer computing platforms, two common software plat-
forms are BOINC [4] and the Cosm platform. However, neither of these uses an interpreted lan-
guage, and generally require customized programs for submitting tasks and collecting results.

There are a variety of tools for parallel programming in Python. MPI implementations for
Python include pyMPI [3], mpidpy [1] and MMPI. These have the same functionality as a standard
MPI implementation and thus are not well suited to master-worker computation on large scale
computing platforms. There is also a variety of modules supporting master-worker style parallel
computing with Python, usually on a single machine. These include Parallel Python [2], seppo

(simple embarrassingly parallel python), and the pprocess and processing Python modules.

6 Conclusions and Future Work

In this paper we introduced the PyMW Python module for parallel distributed master-worker style
computation. The module is designed to allow easy usage of multicores, clusters and volunteer
computing systems by inexperienced scientists and programmers. At the same time, it is intended
to be extendable through interfaces to support additional platforms and functionality. We demon-
strated through experiment that PyMW can be used to write parallel programs that run on a variety
of platforms and scale well.

In future work, we hope to extend the functionality of PyMW. In addition to supporting more
computing platforms, PyMW will also give the user more control to determine task status, kill tasks
and run non-Python worker programs. To support very long running computations, PyYMW will
support state freezing and restoring, allowing master programs to be restarted from the middle. We
also plan to introduce a new type of BOINC project — called PyBOINC — to support users needing
massive computing power for master-worker style computing. The current version of PyMW is
available at http://pymw.sourceforge.net/

Acknowledgments

This work was supported in part by Research Fellowship (19-:55401) and Grant-in-Aid for Sci-
entific Research (A)20240002 from the Japan Society for the Promotion of Science, and by the
Global COE Program “in silico medicine” at Osaka University.

References
[1] mpidpy - http://mpidpy.scipy.org/.
[2] Parallel python website - http://www.parallelpython.com/.
[3] Pympi - http://pympi.sourceforge.net/.

[4] D. P. Anderson. BOINC: A system for public-resource computing and storage. In R. Buyya,
editor, 5th International Workshop on Grid Computing (GRID 2004), 8 November 2004,
Pittsburgh, PA, USA, Proceedings, pages 4—10. IEEE Computer Society, 2004.

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an
experiment in public-resource computing. Commun. ACM, 45(11):56-61, 2002.

[6] O. Aumage, R. Hofman, and H. E. Bal. Netlbis: An efficient and dynamic communication
system for heterogeneous grids. In Proc. of 5rd IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2005), Cardiff, UK, May 2005.

[7] M. P. Forum. Mpi: A message-passing interface standard. Technical report, Knoxville, TN,
USA, 1994.

[8] L. T. Foster. Globus toolkit version 4: Software for service-oriented systems. In H. Jin, D. A.
Reed, and W. Jiang, editors, NPC, volume 3779 of Lecture Notes in Computer Science, pages
2-13. Springer, 2005.

[9] M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128-138, 1980.

[10] M. P. Sullivan and D. P. Anderson. Marionette: a system for parallel distributed program-
ming using a master/slave model. Technical Report UCB/CSD-88-460, EECS Department,
University of California, Berkeley, Nov 1988.

[11] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the condor
experience. Concurrency - Practice and Experience, 17(2-4):323-356, 2005.

