Techniques for Automatic Parallelization and
satwesy OQptimization of Biological Simulations from insilicolDE

Eric Heien ', Yoshiyuki Asai 3, Taishin Nomura 23, Kenichi Hagihara '3

1: Graduate School of Information Science and Technology, Osaka University
2: Graduate School of Engineering Science, Osaka University

in Silico IDE

As part of the in silico medicine initiative, the insilicolDE
program is being developed. This program allows scientists
to create models of biological systems and perform model
based simulations. The long term goal is to database and
simulate large scale biological models.

These models may be on the order of thousands or
millions of components (modules), which can require hours
to simulate. The focus of this research is investigating
methods for decreasing execution time through parallel
execution. The intended environment is an MPI enabled
cluster of networked computers or multi-core processor.

In this research, we used a model of a spinal motor
neural network based on the brain stem respiratory neural

network model by Rybak.

g J

™ . . .
Simulation Generation

3: The Center for Advanced Medical Engineering and Informatics, Osaka University

(o]

—w Message
&ﬂ[ﬂ% Passing

Lo Y Interface
METIS Graph \ em om \l
Partitioner e e

Clock

it channel
class CCa_L_Channel_16 public Chodule {
public:

dor
(exp((V - 131

aresuits) {
vac[1) / (TunctionVec{2175])): }
> Bvec) ()

insilicolDE with Spinal-8 Model

Automatically Generated C++ Code

Model Parallelization Techniques

Node X Node Y Node X

Module A Module B Module A /-‘h

Module C Module D

woaute][sate |
.

Initial Model Graph Simplified Model Graph

N
Automatic Parallelization

HP ProLiant G2 with 2.8 GHz Xeon x 32

Test Cluster Setup

Models may be highly complex with many dependencies between modules. In the
example above, the initial model has states and functions which depend on each
other for calculation. However, because of this complexity the resulting parallel
simulation can require multiple communication steps between compute nodes (i.e.
the result of J must be sent from node X to Y, then the result of G must be sent
back from Y to X). To reduce communication, the model is simplified as shown in
the above right. Only state dependencies are retained, and function dependencies
are implicitly recorded as calculation weights in modules. Combined with
redundant function calculation, this allows fast parallel simulations with single
communication phases. This also allows a clean break between computation and

communication, which improves overall speed.

. J

Graph showing the relations between modules for the Spinal-8 network
and the mapping for a 16 node cluster. Colors indicate which node a
module is mapped to, and edges represent state dependencies
between modules. Creation of the graph and division among cluster
nodes was accomplished in less than 0.02 seconds using the METIS
\serial graph partitioning library function METIS_PartGraphKWay().

7)
I'a||e| Exec tlon esu |tS o Analysis of Simulation on 8-core Machine _ Analysis of Simulation on 32 Machine Cluster
£ 400 S g
=2 300 @ g
Update states needed Calculate functions s e] 2 4
by this node ceded by this node = § 200 T 2
o e " o
<] [}
= e [[[R N
nitialize modules, —
states and Perform Runge-Kutta 8 =) 80 —
Iculations [=% < -
parameters ca S. g4 S & 60
oS 58 40
88 4 38 20
SL 2 X 0] o e e e e e OO
Send/receive states — T T T — T T T
(MPI_Send/Recv) 0 1 2 3 5 6 7 8 g
T O
Number of Nodes]
Q
® O T 1T T T T 1T 17 T T T 1
unctions to file
) . . 12 4 6 8 10121416 20 24 28 32
Graphs showing the bre_akdown qf time spent in Number of Nodes
each part of the simulation. Coloring corresponds
to the program flow graph (left). As node count I vise I state Calouiation — Tol Speecup
The program flow for a parallel insilicolDE increases, communication grows. Also, since this E f:;“z‘::l';z“’” ! :::z::z: z:'e‘::::“ T Avg # States Sent
simulation using the Runge-Kutta approximation model is of 8 neurons with few interconnections, B ntegration e State Speedup
to solve ordinary differential equations. node counts of 4, 8 and 16 perform well.
|\ J

