
Techniques for Automatic Parallelization and
Optimization of Biological Simulations from insilicoIDE

Eric Heien 1, Yoshiyuki Asai 3, Taishin Nomura 2,3, Kenichi Hagihara 1,3
1: Graduate School of Information Science and Technology, Osaka University
2: Graduate School of Engineering Science, Osaka University
3: The Center for Advanced Medical Engineering and Informatics, Osaka University

The program flow for a parallel insilicoIDE
simulation using the Runge-Kutta approximation
to solve ordinary differential equations.

Parallel Execution Results

Graphs showing the breakdown of time spent in
each part of the simulation. Coloring corresponds
to the program flow graph (left). As node count
increases, communication grows. Also, since this
model is of 8 neurons with few interconnections,
node counts of 4, 8 and 16 perform well.

Simulation Generation

....
//! High-threshold calcium channel
class CCa_L_Channel_16 : public CModule {
public:

 ///// module states /////
 //! channel dynamics of activation. Unit : ratio
 double m;
 ///// module parameters /////
 //! maximal conductance of the channel. Unit : uS
 double g_;
 ///// module functions /////
 //! stady state value of m Unit : ratio
 double m_inf(const double &V) { return (1.6/(1 + exp(-0.072*(V - 5))))/(1.6/(1 + exp(-0.072*(V - 5))) + 0.02*(V - 1.31)/

(exp((V - 1.31)/5.36) -1)); }
 //! time constant of m Unit : ms
 double t_m(const double &V) {return 1/(1.6/(1+exp(-0.072*(V - 5)))+0.02*(V-1.31)/(exp((V-1.31)/5.36)-1)); }
 //! Conductance of the Channel Unit : uS
 double g(const double &g_ , const double &m) { return g_ * (m*m); }
 ////////////////////////////
 CCa_L_Channel_16(const double &m_) : g_(0.0015) { m = m_; }
 ~CCa_L_Channel_16(){};
 void integration(vector<double*> &vec){ m += *vec[11]; }
 void updateStates(const double &time,vector<double*> &vec,vector<double*> &results) {
 *results[11] = dt * (((*functionVec[2180]) - (*vec[11])) / (*functionVec[2175])); }
 void immediateStates(const double &time,vector<double*> &vec) { }

};

Automatically Generated C++ Code

Message
Passing
Interface

METIS Graph
Partitioner

insilicoIDE with Spinal-8 Model

in Silico IDE
 As part of the in silico medicine initiative, the insilicoIDE

program is being developed. This program allows scientists
to create models of biological systems and perform model
based simulations. The long term goal is to database and
simulate large scale biological models.

 These models may be on the order of thousands or
millions of components (modules), which can require hours
to simulate. The focus of this research is investigating
methods for decreasing execution time through parallel
execution. The intended environment is an MPI enabled
cluster of networked computers or multi-core processor.

 In this research, we used a model of a spinal motor
neural network based on the brain stem respiratory neural
network model by Rybak.

Automatic Parallelization Model Parallelization Techniques

Initial Model Graph Simplified Model Graph

Models may be highly complex with many dependencies between modules. In the
example above, the initial model has states and functions which depend on each
other for calculation. However, because of this complexity the resulting parallel
simulation can require multiple communication steps between compute nodes (i.e.
the result of J must be sent from node X to Y, then the result of G must be sent
back from Y to X). To reduce communication, the model is simplified as shown in
the above right. Only state dependencies are retained, and function dependencies
are implicitly recorded as calculation weights in modules. Combined with
redundant function calculation, this allows fast parallel simulations with single
communication phases. This also allows a clean break between computation and
communication, which improves overall speed.

Graph showing the relations between modules for the Spinal-8 network
and the mapping for a 16 node cluster. Colors indicate which node a
module is mapped to, and edges represent state dependencies
between modules. Creation of the graph and division among cluster
nodes was accomplished in less than 0.02 seconds using the METIS
serial graph partitioning library function METIS_PartGraphKWay().

Test Cluster Setup
HP ProLiant G2 with 2.8 GHz Xeon x 32

Automatic Parallelization Automatic Parallelization

