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Recent work in biophysical science increasingly focuses on modeling and sim-
ulating human biophysical systems to better understand the human physiome.
One program to generate such models is insilicoIDE. These models may consist
of thousands or millions of components with complex relations. Simulations of
such models can require millions of time steps and take hours or days to run on
a single machine. To improve the speed of biophysical simulations generated by
insilicoIDE, we propose techniques for augmenting the simulations to support
parallel execution in an MPI-enabled environment. In this paper we discuss the
methods involved in efficient parallelization of such simulations, including clas-
sification and identification of model component relationships and work division
among multiple machines. We demonstrate the effectiveness of the augmented
simulation code in a parallel computing environment by performing simulations
of large scale neuron and cardiac models.

1. Introduction

Encouraged by the success of the Human Genome Project, international ef-
forts to model the human physiome are beginning to take shape. These efforts
include work by the International Union of Physiological Sciences (IUPS) Phys-
iome Project 1), National Simulation Resource (NSR) Physiome Project 2) and
the in silico Medicine initiative 3). The goal of these projects is to create in sil-
ico (i.e., computer based) multi-level and multi-timescale integrated models of
human cells, organs and systems 4).
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One goal of modeling biophysical systems is to perform numerical simulations
based on the models. These simulations can help researchers understand complex
physiological phenomenon, such as the effect of various drugs in causing cardiac
arrest 5),6). One environment for modeling such systems is the insilicoIDE pro-
gram 7),8). With insilicoIDE, simulations are performed by exporting the bio-
physical model and control code as a C++ language source file. The source is
compiled and executed on a target platform to maximize computational speed.
However, simulations of large models may require hours or days to complete on
a single computer. For this reason, we added parallel computing support to the
simulations generated by insilicoIDE. In this paper we describe the techniques
used to generate efficient parallel simulations of biophysical models from insil-
icoIDE.

There are currently numerous software packages for performing biological mod-
eling and simulation. At the molecular scale, GROMACS 9) is used for fast paral-
lel simulation of biomolecular systems. Stochastic simulators allow for probabilis-
tic simulations of biomolecular processes 10), and discrete event simulations 11),12)

are also used for general biophysical modeling and simulation. However, these
types of simulations target different models than insilicoIDE. There are nu-
merous packages for modeling and simulating biological systems at a cellular or
biochemical pathway level 13)–20), though none of these support parallel simula-
tion needed for large models. Several specialized projects deal with large scale
parallel simulation of specific parts of the human physiome, including neuron net-
works 21)–24) and heart simulation using morphological models 5). Although there
are a wide range of tools for biological modeling, few offer parallel computing
support for large scale model simulation. To the best of our knowledge, the only
software platform currently targeting parallel simulation of general large scale
multi-level physiome models is insilicoIDE.

In this paper, we describe the techniques used to efficiently parallelize simula-
tions of biophysical models created by insilicoIDE. Originally insilicoIDE sup-
ported only serial simulation on a single machine, however, parallel simulations
are now possible using the techniques described below. Although these tech-
niques are applied to insilicoIDE, they can be used in any biophysical simulation
with a similar model structure. In Section 2 we describe the model creation
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environment and the biophysical simulations it generates. Section 3 details the
techniques used to generate efficient parallel simulations of general biophysical
models. Section 4 describes experimental results for parallel simulations created
by insilicoIDE. We close with our conclusions and future work in Section 5.

2. insilicoIDE

In this section we describe insilicoIDE, a graphical environment for creating
multi-scale models of biophysical systems. The structure of the biophysical mod-
els is described in Section 2.1. Section 2.2 details how insilicoIDE generates
simulation code for a model and what type of calculations the simulation per-
forms.

2.1 Biophysical Models
In insilicoIDE, biophysical models are composed of “modules” that represent

functional biological elements such as membranes, cells, organs, etc. The mod-
ules are connected by “edges” representing structural or logical relationships.
Edges allow modular, hierarchical, and/or network representations in a model.
For example, a module representing intracellular ion concentration may be con-
nected to a cell membrane module, which connects to an extracellular ion con-
centration module. Modules contain any number of user specified functions,
static parameters and/or dynamic states. They also may include morphological
data describing, for example, the bone structure or heart topology related to a
model. However, parallelization involving the morphological data is currently
not supported and we ignore it. The models are stored in the insilicoML format.
insilicoML is a XML based description language for multi-level and multi-scale
models of physiological functions. More details on the structure and organization
of models are available in Ref. 25).

For the purposes of this paper, the key module elements are parameters, states
and functions. Static parameters are values that do not change during the course
of the simulation, for example, the viscosity of water or the Faraday constant.
Dynamic states represent values that change over time governed by ordinary
differential equations (ODEs). An example of a dynamic state is the ion con-
centration in a cell, changing based on the inflow and outflow of ions. Functions
represent mathematical functions used to simplify modeling. An example of

Fig. 1 insilicoIDE model of 8 connected Rybak brain stem respiratory neurons.

module functions are the ionic channel current functions in the Hodgkin-Huxley
model 26).

Biophysical models are created by constructing and linking modules together.
A state or function in one module may use the value of a state or function
in any module it is linked to. Figure 1 shows a sample model with 8 modules
representing Rybak brain stem respiratory neurons 27). In this model, each neuron
module contains numerous submodules representing ion channels, membranes,
etc.

2.2 Biophysical Simulation
To perform a simulation, insilicoIDE generates C++ source code based on a

biophysical model. This source code contains classes representing each module
and control code to perform the simulation. Each module class contains vari-
ables representing states and parameters. The classes also contain functions that
calculate the states and functions of the module for given inputs.

insilicoIDE simulations update states using either the Euler or Runge-Kutta
approximation method. In this paper we focus on the Runge-Kutta method
because of its substantially higher accuracy and computational requirements.
The Runge-Kutta fourth order method is used to approximate the solution over
a series of T time steps each of length h, both specified by the user.

Figure 2 shows pseudocode of simulation execution. After initialization, the
program performs T simulation steps. Each step involves computing the Runge-
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1: Create modules with functions F and states S0

2: step = 0
3: while step < T do
4: k0 = Sstep

5: for i in [1, 4] do
6: ki = F (ki−1)
7: end for
8: Sstep+1 = Sstep + 1

6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4

9: step += 1
10: Write Sstep values to a log file

11: end while

Fig. 2 Pseudocode of insilicoIDE simulations.

Kutta method values k1, k2, k3, k4 and using these to approximate the solution
to the state ODEs.

3. Parallel Code Generation

Here we describe the techniques used by insilicoIDE to perform fast parallel
simulations for arbitrary models. A simple way of performing a parallel simula-
tion is to evenly divide modules among compute nodes. Sophisticated methods
involve minimizing communication by using a graph partitioning scheme to divide
the simulation. However, these methods can be inefficient because of complex
interactions not apparent from the model.

Figure 3 shows a graph of an example model with four modules and their data
dependencies. This graph contains vertices representing state and function cal-
culations, and edges representing dependencies between these calculations. For
simplicity, each function and state is considered to require the same amount of
computation. A work division for two nodes (X and Y) based on graph parti-
tioning would assign modules A and C to node X and modules B and D to node
Y. Table 1 shows the pseudocode to perform one simulation step of this model.
There are several problems that affect the efficiency of this simulation. First,
due to the nature of the model, multiple communication phases occur (steps 1,
3, 4 and 6). Second, several steps (5, 7 and 8) leave one of the processors idle.
Because of this, the overall simulation speed is affected. This problem occurs
because the work partitioning does not distinguish between functions and states,
and does not capture the true dependencies of each module. To improve the

Fig. 3 A sample model with four modules A, B, C and D. The modules are divided between
two nodes, X and Y. The arrows indicate data dependencies.

Table 1 The steps needed to perform one simulation time step for the model in Fig. 3.

Step Node X Node Y
1 Send R, S to Y Receive R, S
2 Evaluate J(S) Evaluate I(R), H(S)
3 Receive I(R) Send I(R) to X
4 Send J(S) to Y Receive J(S)
5 (none) Evaluate G(S)
6 Receive G(S) Send G(S) to X
7 Evaluate F(S) (none)

8 Approx. dS
dt

, dR
dt

(none)

simulation, we modify the graph to distinguish dependencies between state and
function vertices.

In this section, we present techniques for improving computational speed based
on model analysis. First in Section 3.1 we examine the types of module data
dependencies. Section 3.2 illustrates how this dependence information is used
to improve speed by minimizing computation and communication. The division
of work among multiple machines for minimum communication is described in
Section 3.3.
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3.1 Module Dependencies
In the parallel simulation, the fundamental unit of work distribution among

computing nodes is the module. We optimize the simulation speed through anal-
ysis of data dependencies among modules. As described in Section 2.1, a module
may depend on an arbitrary number of modules in multiple ways. insilicoIDE an-
alyzes these dependencies when generating the simulation, and uses the analysis
to optimize the parallel simulation. The analysis requires no user assistance and
takes a small fraction of the total time to generate a simulation. Dependencies
can be classified into four categories described in the following sections:

3.1.1 Function ← Function
Function ← Function dependencies occur when the evaluation of function F

requires the output value of function G, denoted as F ← G. Naturally there can
be no circular dependencies among functions. However, there may be nested de-
pendencies spanning multiple modules, in which case all the dependent functions
are recorded. In Fig. 3, one Function ← Function dependence is F ← G,H, J .

To record Function ← Function dependencies, insilicoIDE creates a directed
acyclic graph (DAG) based on the immediate dependencies of each function.
Since functions are used to update states, the DAG is referenced when deter-
mining State ← Function dependencies. This gives a better estimate of the
computational cost of a state.

3.1.2 State ← Function
State ← Function dependencies occur when the update of a state S requires

the output of a function F , denoted S ← F . Because of Function ← Function
dependencies, a state update may depend on more functions than are immedi-
ately obvious in the ODE. Once immediate State ← Function dependencies are
determined, the DAG generated from Function ← Function dependence analysis
is referenced to determine the entire set of functions needed for a state update.
For example, if S ← F and F ← G then the complete dependence relation
is S ← F,G. In Fig. 3, S ← F is a direct dependence, but the entire set of
dependencies is S ← F,G,H, J .

3.1.3 Function ← State
Function← State dependencies occur when evaluation of a function F requires

a state S as input, denoted as F ← S. Using this information can decrease

computation and communication time. For example, if F ← S and T ← F for
states S and T , then communication and computation can be reduced by placing
the modules containing S and T on the same computing node. In Fig. 3, an
example Function ← State dependence is I ← R.

3.1.4 State ← State
State ← State dependencies occur when the update of state S requires the

value of state T , denoted as S ← T . Unlike Function ← Function dependencies,
State ← State dependencies can have circular relationships because state values
are updated simultaneously. In other words, if at time t there are states St and
Tt with S ← T and T ← S, then the value of St+1 = f(Tt) and Tt+1 = g(St). In
Fig. 3, an example State ← State dependence is R← S.

3.2 Using Dependence Information to Improve Simulation Speed
The dependence information described in Section 3.1 is used to ensure the

correctness of the simulation and to improve simulation speed. Two techniques
based on the model analysis are used to decrease total communication and im-
prove total simulation speed.

The dependence information is recorded in the simulation C++ source file.
State← Function (implicitly including Function← Function) and State← State
dependencies are recorded in each module class. This effectively records what
states and function evaluations are needed to update the states in each module.
Function ← State dependencies are recorded separately from the modules. This
is to distinguish Function ← State dependence from State ← State dependence,
which is necessary to perform the optimization described in Section 3.2.1. Tech-
niques to improve simulation speed are described in the following two sections:

3.2.1 Redundant Function Evaluation
For every simulation time step, each node must evaluate the functions necessary

to update the states of its modules. Function dependence information recorded
in the modules is referenced so that only the necessary functions are calculated
by each node. This way each node will avoid evaluating functions not needed for
its state updates.

Ideally, states and their dependent functions will be on the same compute
node, though this cannot be guaranteed. Function dependencies may span mul-
tiple modules, therefore the issue arises of how to handle functions needed by
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Fig. 4 An example of redundant function calculation. Functions F and G are evaluated on
both nodes 1 and 2 to avoid extra communication between the nodes.

multiple compute nodes. As shown in Table 1, communicating module function
evaluations between nodes can slow the simulation. Because function evalua-
tion time is relatively fast compared to communication time in most networks,
multiple nodes can redundantly evaluate functions to increase overall speed.

Figure 4 gives an example of this. Although Modules A and B are on different
compute nodes (nodes 1 and 2, respectively), they both require function F in
Module C. To avoid excess communication, both nodes 1 and 2 evaluate F
and G independently. By only evaluating necessary functions and redundantly
computing functions on multiple nodes, total simulation time is decreased.

3.2.2 State Communication
The State ← State and Function ← State dependencies correspond to state

communication between modules. An even division of modules among compute
nodes can yield balanced computational load to each node, but may result in
unbalanced and excessive communication. This is because some modules com-
municate many states while others communicate relatively few.

By recording State ← State and Function ← State dependencies, modules
with similar state requirements can be grouped on compute nodes to minimize
communication between nodes. In the example from Section 3, the state depen-
dencies are not completely known which leads to poor performance. For example,
through the chain of dependencies from Function F to Function H, we see that
module A implicitly requires state R for an update of state S, which is not shown
in the figure. This technique is detailed in the next section.

3.3 Work Partitioning
The unit of work division for a parallel simulation is the module. More specif-

ically, it is the task of updating the states of a module. This includes function
calculation and state retrieval from other modules. At the start of the parallel
simulation, modules must be partitioned among compute nodes. In this section
we explain how modules are divided among compute nodes to maximize simula-
tion speed.

Let there be P compute nodes N0, N1, . . . , NP−1 performing the simulation.
The root node N0 calculates a mapping of D modules M = {M0,M1, . . . ,MD−1}
to the compute nodes, where each module is assigned to one compute node.
To compute this mapping, we represent the simulated model as a graph, with
graph vertices corresponding to modules and graph edges corresponding to state
dependencies between modules.

The graph representing the modules and their state dependencies is generated
as follows. The vertices V of the graph correspond to the modules M . A module
Mi with state S is connected to a module Mn with state R in two possible cases:
1) S ← R or 2) S ← F and F ← R (using the dependency information described
in Section 3.1). This means the new module graph explicitly includes Function
← State dependencies which are not directly evident from the model. This also
effectively deletes the Function← Function and State← Function dependencies,
but only for the purpose of work partitioning (the data are retained in the sim-
ulation file). To estimate the true computational cost, each vertex is assigned
a weight representing the number of functions needed to update the states at
that vertex, or in other words the calculation cost of the module. This is slightly
inaccurate because some functions are shared by multiple state calculations, but
in our experience it is a reasonable approximation.

To obtain a mapping of the modules to the P compute nodes, we use the
function METIS PartGraphKway from the serial graph partitioning library
METIS 28). This function takes as input a graph and number of partitions P ,
and returns a mapping of each vertex in the graph to a partition. The mapping
is computed with two goals: 1) the sum of weights of vertices in each partition is
roughly equal and 2) the total number of edges crossing partitions is minimized.
In the simulation, these mapping goals respectively correspond to 1) equal com-
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Fig. 5 The model from Fig. 3 after using the techniques described in this paper. The weight
of a state refers to the number of function evaluations needed to update the state. The
arrows indicate only State dependencies, since Functions are not communicated.

putation at each compute node and 2) minimal communication between nodes.
The output of METIS is a mapping of each module to a compute node. Given

this mapping, the root node determines for each compute node: 1) which states
it must evaluate 2) which functions it must evaluate 3) which states it must
send/receive to/from which processors. Finally, the root node sends this infor-
mation to every node and the simulation begins.

Figure 5 shows the effect of applying the techniques to the original example
model. The graph in Fig. 3 becomes the graph in Fig. 5 through a series of steps
which preserve simulation correctness. First, State ← State and State ← Func-
tion dependencies are left intact. Next, Function ← Function dependencies are
removed and noted implicitly through the weights of each module. The depen-
dency information is retained in the simulation to ensure correct calculation, but
for communication it is ignored. In Fig. 5, Module A has weight 5 because it
represents the calculation of 1 state and 4 functions (F, G, H, J). Module C has
weight 2 because it represents the calculation of 1 state and 1 function. Finally,
Function ← State dependencies are handled. We can treat the state dependen-

Table 2 Steps for simulation of the model in Fig. 5.

Step Node X Node Y
1 Send S to Y Receive S
2 Receive R Send R to X
3 Evaluate H, J, G, F Evaluate I

4 Approximate dS
dt

Approximate dR
dt

cies of function F as the union of all state dependencies of its children (functions
G, J, H). This means that any node which calculates F must receive the states
needed to calculate its children and ensure simulation correctness. Therefore, the
previous dependency H ← R is transformed into the dependency F ← R.

In the new graph, only state communication edges exist because function cal-
culation is performed locally on each node. Although modules C and D belong to
node Y, the evaluation of functions J and H actually occurs on node X. Modules
B and D have weight 0 because they do not perform any state updates. The
resulting simulation steps in Table 2 show a decrease in complexity, communi-
cation and idle processor time. With the techniques proposed in this paper, the
simulation is greatly simplified and can be performed in 3 basic stages: commu-
nication, function evaluation and state calculation.

4. Experiments

To confirm the effectiveness of our techniques for optimizing simulations from
insilicoIDE, we performed experiments in parallel computing environments. In
Section 4.1 we describe the setup for the experiments and the models used in the
experiments. Section 4.2 details the effect of our techniques on communication
in the simulations, while Section 4.3 examines the cost of redundant function
computation. Finally, in Section 4.4 we show the runtime of the simulations in
parallel computing environments.

4.1 Setup
The simulations were performed using five biophysical models. The first model

is of eight connected neurons based on the Rybak model of respiratory neurons 27)

and is referred to as “Respiratory”. The second model is of a spinal motor rhythm
generator network 29) and is referred to as “Motor”. Models three through five
represent grids of myocardial (heart muscle) cells 30) in a 5x5 grid (“Cardiac5”), a
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Table 3 Simulation model details.

Model Name Modules States Functions
Respiratory 1209 921 2264

Motor 3781 2244 3960
Cardiac5 740 200 830
Cardiac10 2980 800 3360
Cardiac20 11960 3200 13520

10x10 grid (“Cardiac10”) and a 20x20 grid (“Cardiac20”). Details of each model
are shown in Table 3.

For each model, the simulation was run for T = 10000 time steps. To test
the parallel simulation, we used two environments - a multicore machine and a
networked cluster. The multicore machine is a dual quad core processor Intel
Xeon 2.83 GHz with 4 GB of RAM. The cluster consists of 16 HP ProLiant G2
machines, each with dual 2.8 GHz Xeon processors and 2 GB of RAM connected
by Gigabit ethernet.

4.2 Simulation Communication
One key argument in this paper is that using the techniques described in Sec-

tion 3 will reduce communication by simplifying the model (e.g. Fig. 3 to Fig. 5).
To confirm this, we performed an analysis of communication patterns using the
original model versus the modified model. The results of this analysis are pre-
sented in Fig. 6. For each model, these figures show the average number of states
and functions communicated between nodes, and the number of communication
phases needed per simulation time step. In this paper, a communication phase
is a set of MPI sends and receives between nodes that is uninterrupted by calcu-
lation. In all simulations, the communication data size of a state and function
result are the same (8 bytes).

As seen in Fig. 6 (a), the modified model communicates more states than the
original model for most configurations when simulating the respiratory neuron
model. However, the tradeoff is that the original model must perform up to
4 communication phases per simulation time step. By simplifying the model,
some additional state communication is added, but overall communication time
is decreased through fewer communication phases. It is also worth noting the
low communication when using 2, 4 or 8 nodes - this is because the respiratory

model breaks cleanly into 8 pieces.
Figure 6 (b) shows the effect on communication for the motor network simu-

lation. This model is different from the respiratory model in that many of the
components are strongly connected by states. In this case, the original simula-
tion is best performed with very little state communication, though this in turn
causes multiple communication phases due to function communication. Also, the
number of communication phases stays relatively low regardless of the number of
computing nodes, indicating that there is less inter-module functional dependence
than in the respiratory model. This also explains why function communication is
preferred in the original model simulation, specifically because the modules are
not strongly connected by functions. The sudden increase in states when using
11 nodes is due to the structure of the model.

Figures 6 (c), (d) and (e) show the effect on communication in the three cardiac
cell models. In this case, the grid nature of the model means few communica-
tion phases are required because of the independent nature of each grid element
(heart cell). However, by eliminating function communication in the modified
model, model division follows the grid better than in the original model. This
is noticeable, for example, in the Cardiac5 model where using 5 nodes reduces
communication in the modified model but increases it in the original model.

These figures demonstrate that by removing function dependencies from the
model, our techniques often increase the number of state dependencies (e.g., the
respiratory model). However, because these states can be calculated indepen-
dently the number of communication phases is reduced to 1. Furthermore, in
many cases the increased state communication is offset by the elimination of
function communication, particularly in the cardiac models and the motor net-
work model. The actual effect of the techniques on a given model will vary
depending on the model characteristics.

4.3 Redundant Function Computation
Section 3.2.1 describes a technique to reduce communication with redundant

calculation. Naturally, excessive redundancy will cancel the gain made by de-
creasing communication. To confirm the gain from redundant calculation, we
examined the number of excess function calculations per node. Figure 7 shows
the effect of redundant calculation in terms of extra functions calculated and
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(a) Respiratory model communication. (b) Motor network model communication.

(c) Cardiac5 model communication. (d) Cardiac10 model communication. (e) Cardiac20 model communication.

Fig. 6 Comparison of communication between original and modified models. Upper graphs show the average number of
states/functions sent per node, and lower graphs show the number of communication phases per simulation step.

additional computation time per simulation step.
Depending on the model, the effect can vary widely. The respiratory model

breaks cleanly into 8 pieces, so there is no redundant computation when using
2, 4 or 8 nodes. Functions in the motor model are not strongly connected so
there is generally little or no redundant function calculation. The cardiac grid
models also have little or no redundant function calculation when divided among
a number of nodes that fits the grid well (e.g., 5 nodes for Cardiac5, 10 nodes for
Cardiac10, etc).

Based on the execution of a serial simulation, we estimate the average time to
compute a function as 0.32 µs, which means redundant function calculation adds
at worst 0.68 µs of computation to each simulation time step. This is well under
the latency of most communication channels, for example Myrinet has a minimum
latency of 2.6 µs and Infiniband has a minimum latency of 1.1µs. Therefore, using
redundant calculation is an effective way to reduce overall simulation time.

4.4 Simulation Execution
Figures 8 and 9 show the results of performing the model simulations in the
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Fig. 7 Average number of redundant function evaluations per simulation time step.

two parallel environments. These figures show the total simulation execution
time for different numbers of nodes, the speedup of the computational part of
the simulation, and the total speedup. Initialization time (including graph par-
titioning and work division) was negligible and is not included. We found little
deviation in the run times for multiple executions, so these figures represent only
a single execution.

Figure 8 shows simulation performance in the multicore environment. The sim-
ulations scale very well on multicore machines, achieving a nearly linear speed
increase in both function and state computation. Total simulation speed ap-
proaches a linear speedup for all but the Cardiac5 model, likely because of its
small size. The large myocardial simulation (Cardiac20, Fig. 8 (e)) shows a no-
table superlinear speed increase, likely due to improved cache performance. As
expected, communication time is minimal on multicore machines, though for
smaller models it can become problematic for large numbers of nodes. With
larger models, communication accounts for a relatively small part of simulation
time and more nodes will yield better performance.

Figure 9 shows simulation performance in the cluster environment. In this
environment there is greater sensitivity to communication because of the network
and thus simulations do not scale as well. For simulations performed on the
cluster, communication dominates as the number of nodes increases, particularly
for smaller models. As seen in Fig. 9 (a) and Fig. 9 (b), performance peaks around

16 nodes for the neuron models. The cardiac models scale poorly on the cluster
due to their size, especially Cardiac5. However, the calculation of functions and
states scales well for larger models as shown in the bottom graphs. The Motor
and Cardiac20 simulations achieve a slightly superlinear computation speedup
with multiple nodes.

5. Conclusions

In this paper, we detailed techniques for improving parallel simulations of bio-
physical models generated by the insilicoIDE program. We explained how we
used automated analysis of the models to improve computational speed and
minimize communication in the parallel simulation. Finally, we demonstrated
the effectiveness of these techniques by performing simulations of multiple types
of models with thousands of states/functions.

Current biophysical modeling systems rarely support parallel simulation of the
models, often only for a particular type of model (neuron, cardiac cell, etc.). To
the best of our knowledge, this paper is the first to detail parallel simulation of
general multilevel biophysical models based on ordinary differential equations.
This type of simulation is crucial for progress to be made in the types of large
scale modeling and simulation needed in worldwide physiome projects.

Fundamentally, this research demonstrates a method for determining data de-
pendence between computations (the functions and states), then using this infor-
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(a) Respiratory simulation times. (b) Motor network simulation times.

(c) Cardiac5 simulation times. (d) Cardiac10 simulation times. (e) Cardiac20 simulation times.

Fig. 8 Simulations performed on multicore machine.

mation to minimize dependencies between computing nodes. This has the effect
of reducing communication and accelerating the computation. This technique is
potentially applicable in other fields when performing large scale simulations of
irregular models.

The redundant function calculation technique could be improved by using mul-
tiobjective graph partitioning to minimize both the amount of state communica-
tion and redundant function calculation. For the Rybak model in this paper, the

amount of redundant function calculation is small enough to make this unneces-
sary. However, for more complicated models with complex function relations, this
might be worth investigating. In addition, using ordered calculation to improve
cache efficiency may also improve state calculation speed.

In future work we plan to extend insilicoIDE to support parallel simulation of
models using partial differential equations, morphological data and agent-based
systems. The complexity of these may require a separate simulator program
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(a) Respiratory neuron simulation times. (b) Motor network simulation times.

(c) Cardiac5 simulation times. (d) Cardiac10 simulation times. (e) Cardiac20 simulation times.

Fig. 9 Simulations performed on cluster.

rather than a compiled simulation. However, the techniques described in this
paper are still applicable to such a system, as well as other parallel biophysical
simulators.
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